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Notation

[d] {1, . . . , d}
xk k-th iterate of an algorithm
x i the i-th coordinate of the vector x .
dom( f ) {x : f (x)< +∞}
∇i f (x) the i-th coordinate of ∇ f (x)
[x , y] an interval if x , y ∈ R
[x , y] a segment {λx + (1−λ)y : λ ∈ [0, 1]} if x , y are vectors.
B(x , r) a closed ball with the center x and radius r: {x : ∥x∥2 ⩽ r}
U(x , r) an open ball with the center x and radius r: {x : ∥x∥2 < r}
ei the i-th vector from the standard orthogonal basis



Lecture 1: Smooth minimization

What is this course about? We will cover stochastic algorithms from optimization, machine
learning, and theoretical computer science (as time permits). We will learn how to analyze
such algorithms, how to apply such algorithms in practice, and why randomness can be so
helpful. Our focus will change from time to time, depending on the context. There will be a
few basic algorithms that you will need to know by heart how to analyze, and there will be
many more for which you will need a big-picture view of why they are important.

I will warn you in advance: there will be a lot of different algorithms. Analyzing them is
not difficult in most cases. However, the sheer number of techniques may seem daunting.

R These lecture notes may contain typos. If you notice any (especially in math), please send
them to me by email.

1.1 Optimization algorithms
There will be many algorithms in this course, and for each of them we should remember in
which setting the algorithm works. This usually depends on assumptions.

For now, our central problem is the unconstrained minimization problem minx∈Rd f (x). Two
main assumptions about f evolve along two orthogonal directions: convexity and smoothness.
Thus, for each algorithm we study, we should keep this table in mind and understand in which
case our algorithm is (theoretically) applicable.

Smoothness/Convexity Nonconvex Convex Strongly convex
L-smooth · · ·
Nonsmooth · · ·

Recall the following definition.

Definition 1.1 A differentiable function f : Rd → R is called L-smooth if its gradient ∇ f is
L-smooth, that is

∥∇ f (x)−∇ f (y)∥2 ⩽ L∥y − x∥2, ∀x , y.

Guarantees. Usually, when we discuss an algorithm, we are interested in some guarantees:
how many iterations the algorithm must run to achieve the desired accuracy. This accuracy can
be measured in several ways:

∥xk − x∗∥⩽ ϵ, f (xk)− f∗ ⩽ ϵ, ∥∇ f (xk)∥⩽ ϵ. (1.1)

mailto:yurii.malitskyi@univie.ac.at


1.2 Gradient Descent 6

Not all of them are always applicable. For example, there is little hope of using ∥xk−x∗∥⩽ ϵ
for the nonconvex case (in general), since x∗ is not unique and we cannot guarantee that (xk)
converges to a particular x∗. The same can be said for f (xk)− f∗ ⩽ ϵ in the nonconvex case. In
the convex case, there may be multiple solutions x∗, so again having ∥xk − x∗∥⩽ ϵ is generally
hopeless. On the other hand, in the convex case f∗ is always the same, so it makes sense to
consider f (xk)− f∗ ⩽ ϵ.

Also, it is good to keep in mind that in most cases the “strength” of the optimality measure
in (1.1) decreases from left to right. That is, if possible, ∥xk − x∗∥ ⩽ ϵ is preferable to
∥∇ f (xk)∥⩽ ϵ.

We may rightly think that the nonconvex case is the most difficult. This is indeed true in
terms of problem solving: in general, the best we can hope for is to find a local minimum. In
terms of algorithm analysis, however, it is often the opposite. The nonconvex world is too
general, it doesn’t have the rich tools of the convex world. This limits the number of tricks one
can try when analyzing algorithms in the nonconvex case.

It is a good habit to have a simple convex function at hand to test all the studied theory on
it. The best example of such a function is a convex quadratic function.

Exercise 1.1 Consider f (x) = 1
2〈Ax , x〉 − 〈b, x〉 with a symmetric positive semi-definite

matrix A. Compute ∇ f and ∇2 f . Prove that f is convex and L-smooth. What will change if
A≻ 0? ■

1.2 Gradient Descent
The most basic (and probably the most important) optimization method for continuous opti-
mization is gradient descent:

xk+1 = xk −α∇ f (xk),

where α > 0 is a stepsize (also known as a “learning rate” in the machine-learning literature).
As I assume some familiarity with this method, I will only provide dry facts.

Here are some classical rates of GD with the stepsize α= 1
L :

Convexity
Smoothness Nonconvex Convex µ-strongly convex

L-smooth O
�

1
ϵ2

�

O
�

L
ϵ

�

O
�

L
µ

log
1
ϵ

�

for ∥∇ f (xk)∥⩽ ϵ for f (xk)− f∗ ⩽ ϵ for f (xk)− f∗ ⩽ ϵ

Note that this is not a complete picture: one could derive the convergence rate for
∥∇ f (xk)∥ ⩽ ϵ in the convex and µ-strongly convex case and additionally ∥xk − x∗∥ ⩽ ϵ
in the strongly convex case.

Lemma 1.1 Descent lemma. If f is L-smooth, then for all x , y it holds

f (y)⩽ f (x) + 〈∇ f (x), y − x〉+ L
2
∥y − x∥2. (1.2)

Proof. The proof is straightforward and follows from the Taylor expansion. ■
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Lemma 1.2 One step of GD. Suppose that f is L-smooth. Then one step of GD with the
stepsize α satisfies

f (xk+1)⩽ f (xk)− α(2−αL)
2

∥∇ f (xk)∥2. (1.3)

Proof. By inequality (1.2) in descent lemma,

f (xk+1)⩽ f (xk) + 〈∇ f (xk), xk+1 − xk〉+ L
2
∥xk+1 − xk∥2

= f (xk)−α∥∇ f (xk)∥2 + α
2 L
2
∥∇ f (xk)∥2

= f (xk)− α(2−αL)
2

∥∇ f (xk)∥2.

■

From inequality (1.3), we immediately see that in order to have a descent, that is f (xk+1)⩽
f (xk), the stepsize must satisfy α ∈ �0, 2

L

�

. Moreover, from our arguments above it follows that
the optimal choice for α is α= 1

L
1. With this choice, we obtain

f (xk+1)⩽ f (xk)− 1
2L
∥∇ f (xk)∥2. (1.4)

Theorem 1.1 Gradient descent for convex functions. Suppose that f is convex and L-
smooth. Then with α= 1

L , we have that

f (xk)− f∗ ⩽
L∥x0 − x∗∥2

2k
. (1.5)

Thus, convergence rate of GD for f (xk)− f∗ is of order O
�1

k

�

. This is known as a sublinear rate.
Given accuracy ϵ, how many iterations of GD do we need to ensure that we reached it? As

before, it means that we have to find the smallest integer k such that

L∥x0 − x∗∥2
2k

⩽ ϵ ⇐⇒ k ⩾
L∥x0 − x∗∥2

2ϵ
.

Hence, the convergence rate of GD in the convex case is O
�1
ϵ

�

.
In general, we cannot compare rates of algorithms that are expressed in different quantitites.

However, in the convex case, one can additionally prove that

∥∇ f (xk)∥= O
�

1
k

�

,

which is strictly better than the one in the nonconvex case. Thus, convexity not only makes
local minima global, but also guarantees faster convergence of algorithms.

Exercise 1.2 Use Lemma 1.2 to derive O
� 1
ϵ2

�

rate for min0⩽i⩽k ∥∇ f (x i)∥⩽ ϵ. For this we
need to assume that f is lower bounded: f (x)⩾ flow for all x . ■

1This doesn’t mean that α = 1
L is always the best stepsize, it follows only from the analysis we provided. But our

analysis may be too loose.
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Accelerated gradient method. In 1983 Y. Nesterov proposed a modification2 of GD:

yk = xk + βk(x
k − xk−1)

xk+1 = yk −α∇ f (yk),
(1.6)

where k ⩾ 0 and x−1 = x0, with unexpected property. This scheme achieves the rate O
�

1p
ϵ

�

for f (xk)− f∗ ⩽ ϵ, which is much better than GD has.

Theorem 1.2 Nesterov’s accelerated method. Suppose that f : Rd → R is convex and
L-smooth. Then iterates of (1.6) with α= 1

L and βk =
k

k+3 satisfy

f (xk)− f∗ ⩽
2L∥x0 − x∗∥2

k2
.

As we discussed in the lecture, O
� 1

k2

�

is the best possible rate for the class of convex and
L-smooth functions for the first-order algorithms.

Comments
To read more about smooth convex minimization I recommend [1, Chapter 2].

References
[1] Yurii Nesterov. Lectures on convex optimization. Volume 137. Springer, 2018.

2Original Nesterov’s method was slightly different, but this is not important for our discussion.



Lecture 2: Subgradients

2.1 Subdifferential
Not all convex functions are differentiable. It useful to allow a convex function to take the
value +∞. For instance, if f is only defined over a convex closed set C , we may extend it to
take values +∞ outside of C . (Check that this extension preserves convexity!) On one hand,
this helps us to not bother where f is defined. On the other, we will have problem with its
differentiability.

Definition 2.1 — Subdifferential. A subdifferential of f : Rd → (−∞,+∞] at x is called a
set

∂ f (x) = {g : f (y)− f (x)⩾ 〈g, y − x〉} .
The elements of ∂ f (x) are called subgradients of f at x .

We will only consider proper convex functions f : Rd → (−∞,+∞], i.e., those for which
dom( f ) = {x : f (x)< +∞} ̸=∅. From the definition it follows immediately, that if f is proper
and convex and f (x) = +∞ for some x , then ∂ f (x) =∅.

Proposition 2.1 If f : Rd → (−∞,+∞] is convex and x ∈ intdom( f ), then ∂ f (x) ̸=∅.

If you know what a directional derivative f ′(x; v) is:

f ′(x; v) = lim
t→0

f (x + t v)− f (x)
t

,

then the following proposition may be useful.

Proposition 2.2 Let f : Rd → (−∞,+∞] be convex and x ∈ dom f . Then

∂ f (x) = {g : f ′(x; v)⩾ 〈g, v〉 ∀v ∈ Rd}.

Proposition 2.3 Let f : Rd → R be convex. Then for any x ∈ Rd the set ∂ f (x) is nonempty,
convex, and compact.

Proposition 2.4 If f is convex and differentiable at x , then ∂ f (x) = {∇ f (x)}.

Proposition 2.5 If f is L-Lipschitz, then ∥g∥⩽ L for all g ∈ ∂ f (x) and all x .
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Exercise 2.1 Try to prove Proposition 2.5. ■

■ Example 2.1 Let f (x) = |x | in R. Obviously, this function is not differentiable at x = 0, but
is so at all other points. It is easy to see that

∂ f (x) =











1 if x > 0

−1 if x < 0

[−1, 1] if x = 0

■

■ Example 2.2 Let f (x) = ∥x∥2. Again, this function is not differentiable only at x = 0:

∂ f (x) =

¨

x
∥x∥2 if x ̸= 0

B(0,1) if x = 0

■

■ Example 2.3 Let C be a set in Rd and f be the indicator function δC(x), which is defined by

δC(x) = 0 if x ∈ C , δC(x) = +∞ if x ̸∈ C .

Then

∂ δ(x) =

¨

{u: 〈u, y − x〉⩽ 0 ∀y ∈ C} if x ∈ C

∅ otherwise

■

The set NC(x) := {u: 〈u, y − x〉 ⩽ 0 ∀y ∈ C} from the last example is called the normal
cone of C at x and plays an important role in the convex analysis.

■ Example 2.4 Let f (x) = max{ f1(x), f2(x)}, where fi is a differentiable function, i = 1,2.
Then

∂ f (x) =











∇ f1(x) if f1(x)> f2(x)
∇ f2(x) if f2(x)> f1(x)
[∇ f1(x),∇ f2(x)] if f1(x) = f2(x).

■

The last example is not a coincidence. We have even more general result.

Proposition 2.6 Let f (x) =maxi=1,...,m fi(x) with fi being convex. Then

∂ f (x) = conv {∂ fi(x): fi(x) = f (x)} .

Proposition 2.7 Fermat’s rule. Let f : Rd → (−∞,+∞] be proper and convex. Then x is a
minimum of f if and only if 0 ∈ ∂ f (x).

Proof. Check that it follows from the definition of the subdifferential in one line. ■

Most often, the basic calculus that involves subdifferentials is the same as with differentials.
However, the important exception is the sum-rule:

∂ ( f + g) ⊂ ∂ f + ∂ g

and this inclusion can be strict. However, if f is differentiable and x ∈ intdom(g), then

∂ ( f + g)(x) =∇ f (x) + ∂ g(x)
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2.2 Subgradient method
Knowing now what a subgradient is, the subgradient method1 can be seen as the most natural
extension of the gradient descent to the nonsmooth setting:

gk ∈ ∂ f (xk)

xk+1 = xk −αk gk (2.1)

Unlike with GD, we cannot guarantee that in every iteration f (xk+1)⩽ f (xk), in other words,
the subgradient method is not a descent method. Its analysis, however, is much simpler than
the one of GD, and will be exceptionally important for us in the sequel.

Lemma 2.1 Let f : Rd → (−∞,+∞] be convex and argmin f ̸=∅. Then

2
K
∑

k=1

αk( f (x
k)− f∗)⩽ ∥x1 − x∗∥2 +

K
∑

k=1

α2
k∥gk∥2. (2.2)

Proof. Let x∗ be any solution of minx f (x). We start from expanding the norm

∥xk+1 − x∗∥2 = ∥xk −αk gk − x∗∥2
= ∥xk − x∗∥2 − 2αk〈gk, xk − x∗〉+α2

k∥gk∥2
⩽ ∥xk − x∗∥2 − 2αk( f (x

k)− f (x∗)) +α2
k∥gk∥2,

where in the last equation we used the definition of the subgradient. From this it follows

2αk( f (x
k)− f∗)⩽ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 +α2

k∥gk∥2.

Summing such inequalities for k = 1, . . . , K , we get

2
K
∑

k=1

αk( f (x
k)− f∗)⩽ ∥x1 − x∗∥2 − ∥xk+1 − x∗∥2 +

K
∑

k=1

α2
k∥gk∥2

and the desired inequality follows immediately. ■

Corollary 2.1 Let ∥x1 − x∗∥⩽ R, AK =
∑K

k=1αk and x̄K = 1
Ak

∑K
k=1αk xk and suppose that

∥g∥⩽ G for all g ∈ ∂ f (x) and for all x . Then

f ( x̄K)− f∗ ⩽
R2 + G2

∑K
k=1α

2
k

2
∑K

k=1αk

(2.3)

Proof. By Jensen’s inequality

AK f ( x̄k)⩽
K
∑

k=1

αk f (xk).

Hence,

2AK( f ( x̄
K)− f∗)⩽ 2

K
∑

k=1

αk( f (x
k)− f∗)⩽ ∥x1 − x∗∥2 +

K
∑

k=1

α2
k∥gk∥2 ⩽ R2 + G2

K
∑

k=1

α2
k

from which the desired inequality follows. ■

There are a few basic strategies for selecting αk.
1Without mentioning it every time, we assume that ∂ f (x k) ̸=∅ for all k.
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A fixed stepsize. Let us use a fixed stepsize αk = α for all k = 1, . . . , K. We would like to
optimize the RHS in (2.3) to find an optimal α. In other words, we want to solve

min
α>0

R2

2αK
+

G2α

2

and deduce that the “best” α= R
G
p

K
, which yields the bound

f ( x̄K)− f∗ ⩽
RGp

K
. (2.4)

It is easy to see that this is equivalent to O
� 1
ϵ2

�

guarantee for f ( x̄K)− f∗ ⩽ ϵ. This way of
choosing a stepsize is called a finite horizon. We fix in advance the number of iterations K that
the algorithm is supposed to run. If we run it for less or more, that stepsize may be not the
best. And the obtained guarantee holds only for this particular x̄K with a fixed K .

Dynamic stepsizes. For the bound (2.3) we want to have

∞
∑

k=1

αk = +∞,

∑∞
k=1α

2
k

∑∞
k=1αk

< +∞.

The most natural choice for αk is then αk =
cp
k
, where k ⩾ 1 and c > 0.

Now we will only have a rough sketch, as later we will improve our analysis anyway. It
should be obvious that because of

K
∑

k=1

1p
k
∼pK ,

K
∑

k=1

1
k
∼ log K ,

we obtain the rate

f ( x̄K)− f∗ = O
�

log Kp
K

�

.

The difference with (2.4) is that we now have an extra log-factor, but on the other hand, this
rate holds for arbitrary K .

R Instead of considering x̄K we could use the “best” iterate min1⩽k⩽K f (x k).

Comments
For a more in-depth reading on subdifferentials/subgradients I recommend anything from of [1,
Chapter 3], [4, Chapter VI], [2, Chapter 3], and lecture notes [3]. On the subgradient method
I recommend [1, Chapter 8] or again the lecture notes [3].
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Lecture 3: Projected subgradient method

It is often the case that we have to solve min f (x) not over the whole space Rd , but over some
subset of Rd . In other words, given a convex and closed set C ⊂ Rd , we are interested in

min
x∈C

f (x).

This is called a constrained optimization problem. A vector x is called feasible if x ∈ C and
infeasible otherwise.

Definition 3.1 — Local/global minimum. A point x ∈ C is called a local minimum of f on
C , if there exist an open ball U(x , r) such that

f (x)⩽ f (y) ∀y ∈ C ∩ U(x , r).

If U(x , r) = Rd above, then x is called a global minimum of f on C .

Before proceeding with algorithms, it is important to understand what is the optimality
condition for this class of problems. Consider the problem

min f (x) := x2 subject to x ∈ [2,3].

It is clear that x∗ = 2 is the minimum of f , however, f ′(2) ̸= 0.

Proposition 3.1 Let f : Rd → R be a proper convex function and C ⊂ Rd be a closed convex
set. Then x ∈ C is minimizer of f over C if and only if

0 ∈ ∂ f (x) + NC(x).

Proof. If for some x , 0 ∈ ∂ f (x) + NC(x), then it follows immediately that x is a minimizer
(check this!). The opposite direction is slightly more involved, but the main idea is the following.
If x ∈ argminC f , then x ∈ argminRd ( f +δC). Then by Proposition 2.7 and Example 2.3,

0 ∈ ∂ ( f +δC)(x) ⊂ ∂ f (x) + ∂ δC(x) = ∂ f (x) + NC(x).

Hence, to finish the proof, we need to show that instead of a strict inclusion, we actually have
an equality:

∂ ( f +δC)(x) = ∂ f (x) + ∂ δC(x).

This is proved by the separation theorem. ■
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Corollary 3.1 Let f : Rd → R be convex and differentiable and C ⊂ Rd be a closed convex
set. Then x ∈ C is a minimizer of f over C if and only if

〈∇ f (x), y − x〉⩾ 0 ∀y ∈ C .

Proof. This follows directly from Proposition 3.1 and the definition of the normal cone. ■

3.1 Metric projection
Definition 3.2 — Metric projection. Given a closed convex set C ⊂ Rd and u ∈ Rd , a metric
projection (also orthogonal projection) of u onto C is the solution of

argmin
x∈C
∥x − u∥2. (3.1)

We denote this solution by PCu.

First, we should convince ourselves that this definition makes sense.

Theorem 3.1 Given a closed convex set C ⊂ Rd , the operator PC is always well-defined.
Moreover, PCu= x if and only if

〈x − u, y − x〉⩾ 0, ∀y ∈ C .

Proof. Note that the problem

min
x∈C

1
2
∥x − u∥22. (3.2)

is equivalent to (3.1). Let’s denote the objective of the latter problem by f . The function f is
strongly convex, hence (3.2) has always a unique solution. Therefore, PCu is well-defined for
every u. Now, using optimality condition for minx∈C f (x) from Corollary 3.1, we get

〈∇ f (x), y − x〉⩾ 0 ⇐⇒ 〈x − u, y − x〉⩾ 0, ∀y ∈ C

and the proof is complete. ■

■ Example 3.1 — Projection onto the ball B(0, r). We have

PB(0,r)u=

¨

u
∥u∥ r, if ∥u∥> r

u, otherwise.

■

■ Example 3.2 — Projection onto the hyperplane H = {x : 〈a, x〉= b}.

PHu= u− b− 〈a, u〉
∥a∥2 a.

■

■ Example 3.3 — Projection onto the subspace ker A. Let A be a m×n matrix with rank(A) = m.
We have to solve

min
1
2
∥x − u∥2 s.t. Ax = 0.

By KKT optimality condition, we have

x − u+ A⊤λ= 0 and Ax = 0.
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Solving this system, we get

PCu= x∗ =
�

I − A⊤(AA⊤)−1A
�

u.

■

Lemma 3.1 A projection PC is a nonexpansive operator, that is

∥PCu− PC v∥2 ⩽ ∥u− v∥2, ∀u, v.

Proof. Let ū= PCu and v̄ = PC v. Then by Theorem 3.1,

〈ū− u, x − ū〉⩾ 0 ∀x ∈ C and 〈v̄ − v, y − v̄〉⩾ 0 ∀y ∈ C .

Setting x = v̄ and y = ū in correspondent equations and adding them, we get

〈(ū− u)− (v̄ − v), v̄ − ū〉⩾ 0 ⇐⇒ ∥ū− v̄∥22 ⩽ 〈ū− v̄, u− v〉.

To conclude, it only remains to apply Cauchy-Schwarz: 〈ū− v̄, u− v〉⩽ ∥ū− v̄∥2∥u− v∥2. ■

3.2 Projected subgradient method
A subgradient method has the following interpretation: we choose a gk ∈ ∂ f (xk), approximate
f by a quadratic model around xk and minimize this quadratic model, that is

xk+1 = argmin
x

§

f (xk) + 〈gk, x − xk〉+ 1
2αk
∥x − xk∥22

ª

.

Now our problem of interest is minx∈C f (x) for a convex closed set C . So it is only natural to
consider the following update:

xk+1 = argmin
x∈C

§

f (xk) + 〈gk, x − xk〉+ 1
2αk
∥x − xk∥22

ª

.

Let’s transform the above optimization problem. Notice that f (xk) is just a constant that doesn’t
influence on the solution. Hence, we have

xk+1 = argmin
x∈C

§

〈gk, x − xk〉+ 1
2αk
∥x − xk∥22

ª

= argmin
x∈C

1
2αk
∥x − xk +αk gk∥22

= PC(x
k −αk gk).

To summarize, the projected subgradient method is given by

gk ∈ ∂ f (xk)

xk+1 = PC(x
k −αk gk).

(3.3)

We will always assume that in every iteration ∂ f (xk) ̸=∅. This, for instance, can be guaranteed
if C ⊂ intdom( f ). This time we analyze the method under the assumption that (αk) is
nonincreasing.
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Theorem 3.2 Let C be a convex and compact set with R= diam(C), f : Rd → (−∞,+∞]
be a convex function with ∥g∥2 ⩽ G for all g ∈ ∂ f (x) and for all x ∈ C . Suppose that (αk)
is a nonincreasing sequence. Then

K
∑

k=1

( f (xk)− f∗)⩽
R2

2αK
+

K
∑

k=1

αkG2

2
. (3.4)

Proof. Let x∗ ∈ argminx∈C f (x). Since PC x∗ = x∗, by Lemma 3.1 we have that

∥xk+1 − x∗∥22 = ∥PC(x
k −αk gk)− PC x∗∥22

⩽ ∥xk − x∗ −αk gk∥22
= ∥xk − x∗∥2 − 2αk〈gk, xk − x∗〉+α2

k∥gk∥2
⩽ ∥xk − x∗∥2 − 2αk( f (x

k)− f (x∗)) +α2
k∥gk∥2 //By convexity.

This implies

f (xk)− f∗ ⩽
1

2αk
∥xk − x∗∥2 − 1

2αk
∥xk+1 − x∗∥2 + αk

2
∥gk∥2

=
1

2αk−1
∥xk − x∗∥2 − 1

2αk
∥xk+1 − x∗∥2 +

�

1
2αk
− 1

2αk−1

�

∥xk − x∗∥2 + αk

2
∥gk∥2.

Summing this inequality over k = 1, . . . , K , we get

K
∑

k=1

( f (xk)− f∗)⩽
1

2α0
∥x0 − x∗∥2 − 1

2αK
∥xk+1 − x∗∥2 +

K
∑

k=1

�

1
2αk
− 1

2αk−1

�

∥xk − x∗∥2 +
K
∑

k=1

αk

2
∥gk∥2

⩽
1

2α0
R2 +

K
∑

k=1

�

1
2αk
− 1

2αk−1

�

R2 +
K
∑

k=1

αkG2

2
//Because αk ⩽ αk−1

⩽
R2

2αK
+

K
∑

k=1

αkG2

2
. (3.5)

■

Corollary 3.2 Let in the previous statement αk =
cp
k
, with c > 0. Then for x̄K = 1

K

∑K
k=1 xk

it holds

f ( x̄K)− f∗ ⩽
R2

2c
p

K
+

cG2

2
p

K
. (3.6)

Proof. Notice that

K
∑

k=1

1p
k
⩽

K
∑

k=1

2p
k+
p

k− 1
=

K
∑

k=1

2(
p

k−
p

k− 1)⩽ 2
p

K .

Then for αk =
cp
k
, with c > 0, we deduce from (3.4)

K( f ( x̄K)− f∗)⩽
K
∑

k=1

( f (xk)− f∗)⩽
R2pK

2c
+ c
p

KG2

or, after dividing over K ,

f ( x̄K)− f∗ ⩽
R2

2c
p

K
+

cG2

p
K

.

■
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Corollary 3.3 Let αk =
R

G
p

2k
. Then for x̄K = 1

K

∑K
k=1 xk it holds

f ( x̄K)− f∗ ⩽

√

√ 2
K

RG for any K ⩾ 1. (3.7)

Proof. We only need to optimize over c in (3.6). ■

The bound (3.7) is almost the same as in (2.4), but now it holds for arbitrary K. Note that
even if the optimal constant c = R

G is not available, we would still get O
�

1p
K

�

rate, as (3.6)
indicates. If we want to find x ∈ C such that f (x)− f∗ ⩽ ϵ, we need to run the method for
O
� 1
ϵ2

�

iterations.
For the class of convex functions with bounded subgradients acceleration is not possible,

and the O
�

1p
K

�

rate is the best what we can get in general.

Comments
You can read more on the projected subgradient method in [1, Chapter 8] and [2].
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Lecture 4: Stochastic gradient/subgradient
methods

Consider our basic problem minx f (x), where f is differentiable function. Stochastic gradient
descent (SGD) is the method of the form

xk+1 = xk −αk(∇ f (xk) + ξk), (4.1)

where ξk is a random vector, also called a noise. The vector gk = ∇ f (xk) + ξk is called a
stochastic estimator of the gradient ∇ f (xk), or, for brevity, a stochastic gradient. If E [ξk] = 0,
then E

�

gk
�

=∇ f (xk) and in this case we call gk an unbiased estimator of ∇ f (xk).

R The name SGD is a misnomer — this method doesn’t have a descent property. The name
only reflects that it is a stochastic extension of the gradient descent.

Why do we need to consider such schemes or, in other words, what can be the source of
this noise? The noise ξk can originated from. It may be an intrinsic part of the problem, say
we want to minimize f , given by

f (x) = E [F(x ,ξ)] =

∫

F(x , s)dP(s).

Computing ∇ f (x) is not possible in general, but we can use its estimators ∇F(x ,ξ). This is a
subject of stochastic programming, and we won’t consider it here.

However, our main motivation to inject a random noise ξk into a deterministic scheme is to
make an algorithm more efficient. Does it sound strange to you?

Algorithm complexity. In general, it is not the number of iterations in which we are interested
to find a solution. More often than not, it is the time/money/energy we have to spend to find
it. This leads us to the notion of the complexity of an algorithm. There are many ways how one
can measure complexity, but essentially we should measure what matters, without going to a
finer scale when it is not necessary. For instance, for the class of first-order methods, it makes
sense to measure the complexity of an algorithm in the number of gradients/subgradients we
have to compute. Usually, this is the “expensive” operation and for simplicity we ignore the
rest, such as vector addition.

For now it is not very helpful, after all for GD the number of iterations and the number of
needed gradients are the same numbers, which is O

�1
ϵ

�

. But let’s change now our perspective
a bit. Suppose we want to solve

min f (x) :=
1
n

n
∑

i=1

fi(x), (4.2)
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where we assume that each fi is convex and differentiable and that evaluation of every fi costs
roughly the same. Problem (4.2) is called a finite-sum minimization. In this case, the cost of
one gradient ∇ f (x) equals to n gradients of ∇ fi(x). So if we measure the complexity of GD in
terms of ∇ fi(x), we get

GD complexity = O
�

1
ϵ

�

×Cost(∇ f (x)) = O
�n
ϵ

�

×Cost(∇ fi(x)).

In many applications, n can be a very large number and at the same time, perhaps we don’t
need to solve min f (x) up to a high accuracy. Therefore, to have an efficient algorithm, we
must take everything into consideration: not only ϵ, but also n.

SGD for the finite-sum problem. Convince yourself that the following method

Sample ik ∼ Unif{1, 2, . . . , n}
xk+1 = xk −αk∇ fik(x

k)
(4.3)

is a particular instance of (4.1).

Exercise 4.1 Prove in (4.3) that ∇ fik(x
k) is an unbiased estimator of ∇ f (xk). ■

Conditional expectation. When discussing an unbiased estimator above, we took it for
granted that we could compute E

�∇ fik(x
k)
�

. Actually, to do that, we implicitly assumed that
xk is already given to us as a deterministic vector. However, while analyzing the algorithm,
this won’t be true. Only the initial point x1 is deterministic, the rest x2, . . . , xk are all random
vectors. Because of so much randomness, in general, expressions like E

�∇ fik(x
k)
�

, where the
expectation is taken with respect to all randomness encountered up to the k-th iteration, are
intractable.

A proper definition1 of the conditional expectation is a bit technical, but for us the one you
understand intuitively should suffice. The easiest way to get it is from examples.

■ Example 4.1 Let Ω = {a, b, c, d, e, d},F = 2Ω, and P be uniform. Let define random variables
X , Y, Z as follows

a b c d e f
X 1 3 2 4 0 7
Y 2 2 3 3 1 1
Z 4 4 4 4 5 5

In other words, X (a) = 1, X (b) = 3, and so on. It should be obvious that E [X |Y = 2] = 2,
E [X |Z = 4] = 2.5. In general, if we condition X wrt Y , it means that we condition it wrt
F2 = σ({a, b} , {c, d} , {e, f }), that is σ-algebra2 is generated by the subsets of Ω, where Y is
constant. Similarly, conditioning on Z means that we condition wrt F1 = σ({a, b, c, d}, {e, f }).
Convince yourself that

E [X | F1] = E [E [X | F2] | F1] , (4.4)

or, which is the same but often simpler to write, that

E [X | Z] = E [E [X | Y ] | Z] .
■

1Compared to the classroom lecture, here we will take a closer look at conditional expectation. You can skip this
part if you are confident in your knowledge.

2also known as σ-field
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For us, σ-algebras are information. Consider E [X | G ] with two extreme cases. If we know
nothing, then G = {∅,Ω} and E [X | G ] = E [X ]. If we know everything, then G = F and
E [X | G ] = X .

Equation (4.4) is not accidental.

Proposition 4.1 Tower property. Let (Ω,F ,P) be a probability space. Suppose two σ-
algebras F1,F2 satisfy F1 ⊂F2 ⊂F . Then

E [X | F1] = E [E [X | F2] | F1] . (4.5)

Corollary 4.1 — Law of total expectation. Suppose that X , Y are two random variables
defined on a probability space (Ω,F ,P). Then

E [X ] = E [E [X | Y ]]. (4.6)

Proof. This follows from Proposition 4.1 by taking F1 = {∅,Ω} and F2 = σ(Y ). ■

There is a nice geometric interpretation of the conditional expectation E [X | G ]. Suppose
that X is square-integrable: X ∈ L2(F ) and that G ⊂F . Then E [X | G ] is the best mean-square
approximation of X among G -measurable random variables, that is

E [X | G ] = argmin
Y∈L2(G )

∥Y − X∥2.

In other words, E [X | G ] is the projection of X onto the subspace of L2(G ). The picture below
illustrates the identity (4.5) for a square-integrable random variable X .

Y = E [X | F2] = PL2(F2)X

Z = E [X | F1] = PL2(F1)X

PL2(F1)PL2(F2)X = PL2(F1)X

X

Y

Z

L2(F2)
L2(F1)

Of course, it’s evident that E [E [X | F1] | F2] = E [X | F1] also holds if F1 ⊂ F2. However,
this isn’t particularly interesting, as even the figure above suggests.

Exercise 4.2 Random sums. Let X1, X2, . . . be iid random variables, and let M be a random
variable taking the values 0, 1, 2, . . . that is independent of the (Xk). We wish to study the
sum S =

∑M
i=0 X i . Assuming we know E X and E M , compute ES. ■

Revisiting SGD for finite-sum. Now, let’s revisit the equation (4.3) and incorporate the fact
that xk is also a random vector. As a random vector, xk induces a σ-algebra encompassing all
the randomness up to step k, including i1, . . . , ik−1. Thus, now we can state

E
�∇ fik(x

k)
�

� xk
�

= E
�∇ fik(x

k)
�

� σ(i1, . . . , ik−1)
�

=∇ f (xk).

As a shortcut, we will often denote the conditional expectation above as

Ek

�∇ fik(x
k)
�

=∇ f (xk).
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4.1 Stochastic subgradient algorithm
The same discussion is applied verbatim to the subgradient algorithm. Its stochastic extension
is straightforward:

Choose gk s.t. Ek

�

gk
� ∈ ∂ f (xk)

xk+1 = xk −αk gk (4.7)

We don’t specify how to choose such gk, since it depends on the problem at hand. For instance,
for a finite-sum problem

min
x

1
n

n
∑

i=1

fi(x),

with each fi : Rd → R being convex, we can do the same as in (4.3). This gives us stochastic
subgradient method for finite-sum:

Sample ik ∼ Unif{1, 2, . . . , n}
Choose gk ∈ ∂ fik(x

k)

xk+1 = xk −αk gk

(4.8)

Theorem 4.1 Suppose that f : Rd → R is convex, Ek

�∥gk∥2�⩽ G2, and ∥x1− x∗∥⩽ R. Then
the algorithm (4.7) satisfies

E
�

f ( x̄k)− f∗)
�

⩽
R2

2
∑K

k=1αk

+
G2
∑K

k=1 a2
k

2
∑K

k=1αk

,

where x̄K = 1
AK

∑K
k=1αk xk and AK =

∑K
k=1αk.

Proof. The proof will be very much in spirit of the proof of Lemma 2.1. Let x∗ be any solution
of minx f (x). As before, we expand the norm

∥xk+1 − x∗∥2 = ∥xk −αk gk − x∗∥2
= ∥xk − x∗∥2 − 2αk〈gk, xk − x∗〉+α2

k∥gk∥2. (4.9)

This time we cannot use convexity inequality to bound the term 〈gk, xk−x∗〉. Taking expectation
from both sides of above equation, we obtain

E
�∥xk+1 − x∗∥2�= E

�∥xk − x∗∥2�− 2αkE
�〈gk, xk − x∗〉�+α2

kE
�∥gk∥2�.

Let Ò∇ f (xk) := Ek

�

gk
� ∈ ∂ f (xk). Applying the law of total expectation, we have

E
�〈gk, xk − x∗〉�= E

�

Ek

�〈gk, xk − x∗〉��= E
�〈Ò∇ f (xk), xk − x∗〉�⩾ E

�

f (xk)− f (x∗)
�

.

Now using this inequality in (4.9), we get

∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − 2αk( f (x
k)− f∗) +α2

k∥gk∥2,

which we rewrite as

2αk( f (x
k)− f∗)⩽ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 +α2

k∥gk∥2.
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Summing this inequality over k = 1, . . . , K yields

K
∑

k=1

αkE
�

f (xk)− f∗)
�

⩽
1
2

E
�∥x1 − x∗∥2�+ 1

2

K
∑

k=1

α2
kE
�∥gk∥2�⩽ R2

2
+

G2
∑K

k=1 a2
k

2
.

Jensen’s inequality completes the proof. ■

Exercise 4.3 What should we say about (αk) to make the derivation above completely
rigorous? ■

Exercise 4.4 Explain how we bounded E
�∥gk∥2� in the last inequality of the proof of

Theorem 4.1. ■

With the same proof as for the subgradient method, we can also derive O( 1p
K
) convergence

rate for SGD.

Corollary 4.2 — Fixed stepsize. If αk =
R

G
p

K
for all k ∈ 1, . . . , K and x̄K = 1

K

∑K
k=1 xk, then

E
�

f ( x̄K)− f∗
�

⩽
RGp

K
.



Lecture 5: SGD specifications

5.1 Projected SGD
We can also consider the projected stochastic subgradient method

Choose gk ∈ ∂ fik(x
k)

xk+1 = PC(x
k −αk gk).

(5.1)

The main result below is basically the same as in Theorem 3.2, only with the expectation.

Theorem 5.1 Let C be a convex and compact set with R= diam(C), f be a convex function
with E

�∥gk∥22
�

⩽ G2. Suppose that (αk) is a nonincreasing sequence and x̄K = 1
K

∑K
k=1 xk.

Then

E
�

f ( x̄K)− f∗
�

⩽
R2

2KαK
+

1
2K

K
∑

k=1

αkG2 (5.2)

Natuarally, its proof is also very similar to the one of Theorem 3.2.

Corollary 5.1 Let assumptions of Theorem 5.1 hold. Then (5.1) with stepsize αk =
R

G
p

k
satisfies

E
�

f ( x̄K)− f∗
�

⩽
3RG

2
p

K
.

Proof. It is similar to the proof of (3.6) in Corollary 3.2, which this time we apply to (5.2) with
a simpler (and slightly less optimal) choice of c = 1. ■

5.1.1 Probabilistic guarantees
Results in expectation are useful, but sometimes we would like to have some probabilistic
guarantees: what is the likelihood that x̄k produced by SGD will satisfy the above bound?

If we additionally assume that all stochastic subgradients are bounded (without expectation),
then we get the following high-probability bound.

Theorem 5.2 In the condition of Theorem 5.1 suppose additionally that ∥g∥2 ⩽ G for all
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stochastic subgradients g. Then for any s > 0,

f ( x̄K)− f (x∗)⩽
R2

2KαK
+

K
∑

k=1

αkG2

2
+

RGp
K

s

with probability at least 1− e−
1
2 s2

.

In other words, on the right-hand side we have the same bound as in Theorem 5.1 plus another
O
�

1p
K

�

expression. The high-probability result means that we sacrifice only a little in the
theoretical bound for the expectation, but instead get a very high probability that our inequality
will hold.

To prove this result we need some concentration bounds tools.

Theorem 5.3 Azuma-Hoeffding Inequality. Let X1, X2, . . . , Xn be a sequence of random
variables that satisfy

(i) |Xk|⩽ B for every k;
(ii) E [Xk | X1, . . . , Xk−1] = 0 for every k.

Then

P

� n
∑

i=1

X i ⩾ t

�

⩽ exp

�

− 2t2

nB2

�

.

Proof of Theorem 5.2. We proceed very much as in Theorem 3.2, just this time we separate
noise ξk = Ò∇ f (xk)− gk, where Ò∇ f (xk) = Ek

�

gk
� ∈ ∂ f (xk). Let x∗ ∈ argminx∈C f (x). Since

PC x∗ = x∗, by Lemma 3.1 we have that

∥xk+1 − x∗∥22 = ∥PC(x
k −αk gk)− PC x∗∥22

⩽ ∥xk − x∗ −αk gk∥22
= ∥xk − x∗∥2 − 2αk〈gk, xk − x∗〉+α2

k∥gk∥2
= ∥xk − x∗∥2 − 2αk〈Ò∇ f (xk), xk − x∗〉+α2

k∥gk∥2 + 2αk〈Ò∇ f (xk)− gk, xk − x∗〉
⩽ ∥xk − x∗∥2 − 2αk( f (x

k)− f (x∗)) +α2
k∥gk∥2 + 2αk〈ξk, xk − x∗〉 //By convexity.

We do exactly as before, just now keeping one extra term 2αk〈ξk, xk − x∗〉. Thus, instead of
repeating the same calculations, we just reuse them and include the latter term with noise.
This gives us

K
∑

k=1

( f (xk)− f∗)⩽
R2

2αK
+

K
∑

k=1

αkG2

2
+

K
∑

k=1

〈ξk, xk − x∗〉.

Check that this is exactly inequality (3.5) plus all the accumulated noise.
Now we apply Azuma-Hoeffding inequality for Xk = 〈ξk, xk− x∗〉, k = 1, . . . , K . Notice that

for (Xk) we have

|Xk|⩽ ∥Ò∇ f (xk)− gk∥2∥xk − x∗∥2 ⩽ 2GR and E [Xk | X1, . . . , Xk−1] = 0.

Hence, for all t ⩾ 0,

P

� K
∑

k=1

〈ξk, xk − x∗〉⩾ t

�

⩽ exp

�

− t2

2KG2R2

�

.

Or using t = GR
p

Ks,

P

�

1
K

K
∑

k=1

〈ξk, xk − x∗〉⩾ sGRp
K

�

⩽ exp

�

− s2

2

�

.
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Then we conclude that with probability 1− e−
s2
2 , the expression 1

K

∑K
k=1〈ξk, xk − x∗〉 is less

than sGRp
K

and the Jensen inequality completes the proof.
■

5.2 Complexity
Although we mostly study algorithms from the perspective of convergence rate, in practice the
latter is not of utmost importance. We are more concerned with the time, or energy, or money
we spend to solve the problem. Therefore, we have also to consider the iteration cost. One can
measure iteration cost in different ways: arithmetic operations, matrix-vector multiplications,
etc., but for the algorithms we study, the most natural thing would be the evaluation cost of a
(sub)gradient. We assume that all other operations are negligible in comparison.

To fix the setting, consider the problem f (x) = 1
n

∑n
i=1 fi(x). We use Ò∇ fi to denote either a

gradient or a subgradient of fi (depending on assumptions). Since we want to compare GD and
SGD, we will use the cost of the individual (sub)gradients Ò∇ fi . We suppose that all f1, . . . , fn
incur similar costs. Hence, evaluating one Ò∇ f costs n (sub)gradients Ò∇ fi and in the convex
setting we have the following complexity table.

Algorithms Convergence rate Iteration cost Complexity

Gradient descent O
�

1
ϵ

�

n× C(∇ fi) O
�n
ϵ

�

× C(∇ fi)

Subgradient method O
�

1
ϵ2

�

n× C(Ò∇ fi) O
� n
ϵ2

�

× C(Ò∇ fi)

Stochastic (sub)gradient method O
�

1
ϵ2

�

C(Ò∇ fi) O
�

1
ϵ2

�

× C(Ò∇ fi)

Table 5.1: Complexity results of different algorithms to find x with f (x)− f∗ ⩽ ϵ for f = 1
n

∑

fi , convex
case

The key message is that the complexity of SGD doesn’t suffer from the factor n. Thus, despite
its “slowness” it can be much more efficient in practice than the (sub)gradient method. For
machine learning application the size of dataset, n, can be prohibitively large. And at the same
time it is often sufficient to find a low-accuracy solution.

5.3 Nonconvex case
Let’s see how to analyze SGD beyond the convex case. This time we assume L-smoothness of
f , but won’t assume its convexity.

Theorem 5.4 Let f be L-smooth and f (x)⩾ flow, and Eξ
�∥∇ fξ(x)−∇ f (x)∥2�⩽ σ2. Then

SGD with a stepsize α=
Ç

f (x1)− flow
σ2 LK satisfies

min
1⩽k⩽K

E
�∥∇ f (xk)∥2�⩽ 3

√

√( f (x1)− flow)Lσ2

K
.

Proof. Since f is L-smooth, we can use descent lemma (Lemma 1.1) to get

f (xk+1)− f (xk)− 〈∇ f (xk), xk+1 − xk〉⩽ L
2
∥xk+1 − xk∥2,
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which in turn is equivalent to

f (xk+1)− f (xk) +α〈∇ f (xk),∇ fik(x
k)〉⩽ α

2 L
2
∥∇ fik(x

k)∥2.

Taking expectation Ek and using that Ek

�∥∇ fik(x
k)∥2�⩽ σ2 + ∥∇ f (xk)∥2, we obtain

Ek

�

f (xk+1)
�− f (xk) +

α(2−αL)
2

∥∇ f (xk)∥2 ⩽ α
2σL
2

.

Now we take total expectation E and regroup some terms

α(2−αL)
2

E
�∥∇ f (xk)∥2�⩽ E

�

f (xk)− f (xk+1)
�

+
α2σL

2
.

Summing this inequality over k = 1, . . . , K yields

α(2−αL)
2

K
∑

k=1

E
�∥∇ f (xk)∥2�⩽ E

�

f (x1)− f (xK+1)
�

+
α2σLK

2
⩽ f (x1)− flow +

α2σLK
2

.

(5.3)

With α =
Ç

f (x1)− flow
σ2 LK we may assume without loss of generality that 1 − αL ⩾ 0. Then

α(2−αL)⩾ α and we derive

1
K

K
∑

k=1

E
�∥∇ f (xk)∥2�⩽ 3

√

√( f (x1)− flow)Lσ2

K
,

from which the conclusion follows. ■

The statement of the theorem may appear unclear when σ = 0 due to the specific stepsize α
we’ve employed. However, the proof remains valid until inequality (5.3) (including), before
substituting a particular value for α. Thus, beyond just examining SGD in the nonconvex
scenario, we’ve also gained insight how to analyze GD in this context.

Exercise 5.1 Derive a proper convergence rate for GD in the nonconvex case assuming that
f is L-smooth and lower bounded f (x)⩾ flow for all x . ■

5.4 Strongly convex case
So far we have mentioned strong convexity a few times, but never dicussed it in details.

Definition 5.1 — Strong convexity. A function f : Rd → (−∞,+∞] is µ-strongly convex if

λ f (x) + (1−λ) f (y)⩾ f (λx + (1−λ)y) + µλ(1−λ)
2

∥x − y∥22.

Usually, when we consider µ-strongly convex functions, we implicitly assume that µ > 0. For
us a much more useful will be the following characterization.

Proposition 5.1 Let f be a convex function and µ > 0. The following are equivalent:
1. f is µ-strongly convex.
2. f (y)− f (x)− 〈gx , y − x〉⩾ µ2∥y − x∥22 for all x , y and gx ∈ ∂ f (x).
3. 〈gx − g y , x − y〉⩾ µ∥x − y∥22 for all x , y and gx ∈ ∂ f (x), g y ∈ ∂ f (y).

Naturally, if f is µ-strongly convex, we should expect a better rate for the standard algo-
rithms we study. We illustrate this in the case of the projected SGD.
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Theorem 5.5 Let C be a closed and convex set, f be a µ-strongly convex function, and
Ek

�∥gk∥22
�

⩽ G2. Then the projected SGD (5.1) with αk =
2

µ(k+1) satisfies

E
�

f (xbest)− f∗
�

⩽
2G2

µ(K + 1)
.

where xbest = argmin1⩽k⩽K f (xk).

Proof. We start as usual

∥xk+1 − x∗∥22 = ∥PC(x
k −αk gk)− PC x∗∥22

⩽ ∥xk − x∗ −αk gk∥22
= ∥xk − x∗∥22 − 2αk〈gk, xk − x∗〉+α2

k∥gk∥22.

Let Ò∇ f (xk) = Ek

�

gk
�

. Taking conditional expectation Ek from both sides, gives us

Ek

�∥xk+1 − x∗∥22
�

= ∥xk − x∗∥22 − 2αk〈Ò∇ f (xk), xk − x∗〉+α2
k Ek

�∥gk∥22
�

⩽ ∥xk − x∗∥22 − 2αk( f (x
k)− f∗ +

µ

2
∥xk − x∗∥22) +α2

kG2

= (1−αkµ)∥xk − x∗∥22 − 2αk( f (x
k)− f∗) +α2

kG2

where in the last inequality we used strong convexity and Ek

�∥gk∥22
�

⩽ G2. Dividing by 2αk
and rearranging the terms, we obtain

f (xk)− f∗ ⩽
1
2

�

1
αk
−µ

�

∥xk − x∗∥22 −
1

2αk
Ek

�∥xk+1 − x∗∥22
�

+
αkG2

2
.

We can substitute αk =
2

µ(k+1) to get

f (xk)− f∗ ⩽
µ(k− 1)

4
∥xk − x∗∥22 −

µ(k+ 1)
4

Ek

�∥xk+1 − x∗∥22
�

+
G2

µ(k+ 1)
.

Now we do something that seems strange at first: we multiply both sides by k

k( f (xk)− f∗)⩽
µ(k− 1)k

4
∥xk − x∗∥22 −

µk(k+ 1)
4

Ek

�∥xk+1 − x∗∥22
�

+
kG2

µ(k+ 1)
.

This allows us to nicely telescope the right-hand side after taking total expectation. This yields

K
∑

k=1

kE
�

( f (xk)− f∗)
�

⩽ 0− µK(K + 1)
4

E
�∥xK+1 − x∗∥22

�

+
G2

µ

K
∑

k=1

k
k+ 1
⩽

KG2

µ
.

Now we conclude in the usual way using so-called “best iterate”:

E
�

f (xk)− f∗
�

⩾ E
�

min
1⩽i⩽K

f (x i)− f∗
�

= E
�

f (xbest)− f∗
�

.

Since
∑K

k=1 k = K(K+1)
2 , we conclude

K(K + 1)
2

E
�

f (xbest)− f∗
�

⩽
KG2

µ

and the final bound follows immediately. Clearly, instead of using “best iterate”, we could use
Jensen’s inequality to derive the same bound for a certain weighted average sequence. ■
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Comments
The analysis of the projected SGD including its probabilistic guarantees is from [2]. The analysis
of the strongly convex case is from [1].

In the convex but differentiable case the assumptions

E
�∥∇ fξ(x)∥2

�

⩽ G2 or E
�∥∇ fξ(x)−∇ f (x)∥2�⩽ σ2

are both restrictive, since they essentially require the sequence (xk) to be bounded, which is a
notably strong assumption. There are more refined analyses of SGD that rely on more realistic
assumptions, such as

E
�∥∇ fξ(x)∥2

�

⩽ A( f (x)− f∗) + B,

for some constants A, B > 0. As an exercise, check that the finite sum problem f = 1
n

∑

fi
where each fi is L-smooth, satisfies the above property.

References
[1] Amir Beck. First-order methods in optimization. SIAM, 2017.

[2] John C Duchi. “Introductory lectures on stochastic optimization”. In: The mathematics
of data 25 (2018), pages 99–186. URL: https://web.stanford.edu/~jduchi/
PCMIConvex/Duchi16.pdf.
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Lecture 6: Coordinate gradient method

We use e j to denote the j-th basis vector (0, . . . , 1, . . . , 0) ∈ Rd .
Recall that f is L-smooth if and only if its gradient ∇ f is L-Lipschitz continuous. This time

we give a more refined definition.

Definition 6.1 We call f : Rd → R coordinate-wise (L1, . . . , Ld)-smooth, if for each i ∈ [d],

|∇i f (x + tei)−∇i f (x)|⩽ Li|t|, ∀x ∈ Rd ,∀t ∈ R.

R Whenever we discuss smoothness of f , we always consider the smallest possible constants
Li and L.

It is easy to see that coordinate-wise smoothness is equivalent to Li-smoothness of the
function t 7→ f (x + tei) for every i ∈ [d] and any x ∈ Rd . If f is twice differentiable, then it is
also equivalent to saying that [∇2 f (x)]ii ⩽ Li , or, in terms of matrices, to

diag(∇2 f (x))≼ diag(L1, . . . , Ld).

Exercise 6.1 Check the last statement. ■

Exercise 6.2 Prove that if f is coordinate-wise (L1, . . . , Ld)-smooth then it is also L-smooth
for some L > 0. Moreover, the following must hold

max
i

Li ⩽ L ⩽
d
∑

i=1

Li .

■

Instead of GD
xk+1 = xk −α∇ f (xk),

one can update only one coordinate at a time: say we update only the j-th coordinate and keep
the rest the same

xk+1
j = xk

j −α∇ j f (xk) (6.1)

and we keep xk+1
i = xk

i for i ̸= j. Alternatively, we can write it as

xk+1 = xk −α∇ j f (xk)e j , (6.2)
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where e j is the j-th basis vector.
This is still not a well-defined method — we need to determine some strategy how to select

j in every iteration. This will be discussed a bit later. The main question is why to even consider
such a method?

Potential advantages:
• cheap update. In many situations, computing

∇ j f (x) =
∂ f (x)
∂ x j

can be d times cheaper than computing ∇ f (x).
• larger stepsize: perhaps, instead of α < 2

L we can use α j <
2
L j

.

Potential disadvantages:
• slow convergence. Since we only update one coordinate at a time, it is obvious that this

update is worse than GD’s.

For a long time coordinate gradient methods haven’t been popular, as their convergence
rate was worse than GD’s. This has changed in 2010 when Nesterov suggested a certain random
strategy how to select index j.

6.1 Examples

Separable function. A function f is called separable if f (x) =
∑d

i=1 fi(x i). For this type
of function, basic GD isn’t a good method in general. Consider f (x1, x2) = x2

1 + 106 x2
2 . For

this function L = 2 · 106 (check this!) and hence we have to use a very small stepsize. If we
start from x0 = (1,1), we will need to perform too many iterations to be close to the solution
x∗ = (0, 0).

In general, of course, you should never use a black-box GD for such functions. Instead you
should solve each min fi(x) individually.

Pairwise-separable functions. Let

f (x) =
d
∑

i, j=1

fi j(x i , x j).

This function is a prototypical example of the following situation. Consider a complete graph G
with vertices {1, . . . , d}. Each edge (i, j) defines some function fi j that depends on the vertices
x i , x j of this edge. Our goal is to find vertices weights (x1, . . . , xd) with the smallest total energy
f . In a similar way, we can define the problem for non-complete graphs.

In machine learning, such functions are also used for label propagation tasks. It’s used
when we have a partially labeled dataset and want to propagate labels throughout the dataset
by considering the labels of neighboring data points.

To compute gradient ∇ f (x), we obviously need to compute gradients of each term in the
double sum. This costs O(d2). On the other hand, ∇ j f (x) only costs O(d).

Empirical risk minimization. These are the problems where typical machine learning training
takes place. Consider f defined by

min
x∈Rd

f (x) :=
∑

i∈[n]
ϕi(a

⊤
i x) + g(x),

where ai ∈ Rd are the rows of the n× d matrix A and ϕi , g are convex. Here ai are our data
points, ϕi are loss functions and g is a regularizer.
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The dual problem1 is
min
y∈Rn

∑

i∈[n]
ϕ∗i (yi) + g∗(−A⊤ y),

which can often be tackled by coordinate methods (since the objective is almost separable).

6.2 Analysis

Lemma 6.1 Coordinate-wise descent lemma. If f is coordinate-wise (L1, . . . , Ld)-smooth,
then

f (x + tei)⩽ f (x) + 〈∇i f (x), t〉+ Li

2
|t|2, ∀x ∈ Rd ,∀t ∈ R. (6.3)

(We write inner product 〈∇i f (x), t〉 just to resemble similarity with classical descent lemma.
Of course, now it is just a product of two real numbers.)

Proof. By definition, coordinate-wise smoothness is equivalent to Li-smoothness of t 7→ f (x +
tei) for every i ∈ [d]. Let gi(t) = f (x + tei). Then g ′i(t) = 〈∇ f (x + tei), ei〉 = ∇i f (x + tei).
Since gi is Li-smooth, we can apply descent lemma to g at t and 0 to get

gi(t)⩽ gi(0) + g ′i(0) · t +
Li

2
|t|2

■

Consider coordinate descent with stepsize α= 1
L j

, that is

xk+1 = xk − 1
L j
∇ j f (xk)e j . (6.4)

Lemma 6.2 Suppose f : Rd → R is differentiable and coordinate-wise (L1, . . . , Ld)-smooth.
Then one iteration of coordinate descent (6.4) satisfies

f (xk+1)⩽ f (xk)− 1
2L j
|∇ j f (xk)|2. (6.5)

Proof. This follows directly from (6.3). ■

6.2.1 Choice of the index j

Cyclic choice. This is probably the simplest choice: we select j = k (mod d) + 1. In other
words, we update each coordinate cyclically. Unfortunately, for such a choice it is not possible
to get easy guarantees, although it may perform well on some particular instances.

Greedy rule. It is natural to want to decrease f as much as possible in every iteration.
Considering (6.5), we may choose

j = argmax
i∈[d]

� |∇i f (xk)|2
Li

�

.

This is called a greedy or Gauss-Southwell’s rule. In most cases this approach is not practical,
since this requires us to compute a full gradient ∇ f (xk). However, for certain particular
problems it can be made efficient.

1Skip it if you don’t know what the dual problem is.
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Uniform random choice. Let us choose j uniformly at random

j ∼ Unif {1, . . . , d}
xk+1 = xk − 1

L
∇ j f (xk)e j .

(6.6)

Here we used stepsize α= 1
L and not α= 1

L , since for the latter step we cannot derive a good
rate.

If we take the conditional expectation of both sides in (6.5), we obtain

E j

�

f (xk+1)
�

⩽ f (xk)− 1
2

∑

i∈[d]

pi

L
|∇i f (xk)|2

= f (xk)− 1
2d L
∥∇ f (xk)∥2.

Comparing this inequality with (1.4) (one step of GD), we see that they are of the same nature,
but the former has a much worse constant — d L instead of L. Thus, if we continue with the
analysis, the final constant will end up being d times larger than that of GD. Since, the cost
of each iteration is at best d times cheaper, we conclude that this approach won’t bring any
benefits compared to GD.

Random importance choice. It is reasonable to sample more often those coordinates
whose partial Lipschitz constants are large. This leads to the random importance sampling

Sample j with P [ j = i] =
Li

L1 + · · ·+ Ld

xk+1 = xk − 1
L j
∇ j f (xk)e j .

(6.7)

Lemma 6.3 Let f be coordinate-wise (L1, . . . , Ld)-smooth and let L̄ = 1
d

∑

i∈[d] Li . Then for
the scheme (6.7) it holds

E j

�

f (xk+1)
�

⩽ f (xk)− 1
2d L̄
∥∇ f (xk)∥2. (6.8)

Proof. We just need to take expectation of both sides in (6.5) over j:

E j

�

f (xk+1)
�

⩽ f (xk)− 1
2

∑

i∈[d]

pi

Li
|∇i f (xk)|2

= f (xk)− 1
2
∑

i∈[d] Li
∥∇ f (xk)∥2

= f (xk)− 1
2d L̄
∥∇ f (xk)∥2.

■

Theorem 6.1 Let f be convex and coordinate-wise (L1, . . . , Ld)-smooth. Suppose that

L (x0) =
�

x ∈ Rd : f (x)⩽ f (x0)
	

is compact and R= diam(L (x0)).
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Then

E
�

f (xk)− f ∗
�

⩽
2d L̄R2

k
.

Proof. Since f is convex, we have that for any x ∈ Rd

f (xk)− f ∗ ⩽ 〈∇ f (xk), xk − x∗〉⩽ ∥∇ f (xk)∥∥xk − x∗∥⩽ R∥∇ f (xk)∥,

where we used that xk ∈ L (x0) by (6.5). Hence,

E j

�

f (xk+1)− f ∗
�

⩽ f (xk)− f ∗ − 1
2d L̄R2

( f (xk)− f ∗)2.

Taking total expecation and denoting ak = E
�

f (xk)− f ∗
�

, c = 1
2d L̄R2 , and bk = cak, we deduce

bk+1 ⩽ bk − b2
k .

This yields
1

bk+1
− 1

bk
=

bk − bk+1

bk bk+1
⩾

b2
k

bk bk+1
⩾ 1.

Summing up first k inequalities of this type, we get

1
bk
− 1

b0
⩾ k =⇒ 1

bk
⩾ k =⇒ bk ⩽

1
k

,

and the result follows. ■

Exercise 6.3 What if we didn’t drop out the term 1
b0

at the end of the proof? How would
the final bound look like? ■

Exercise 6.4 Notice that in the same way one could analyze GD. How would the final bound
look like in this case? ■

Strong convexity. In the case of strong convexity, the analysis is even simpler.

Theorem 6.2 Let f be µ-strongly convex and coordinate-wise (L1, . . . , Ld)-smooth, then

E
�

f (xk)− f ∗
�

⩽
�

1− µ
d L̄

�k

( f (x0)− f ∗). (6.9)

Proof. By strong convexity, we have that ∥∇ f (x)∥2 ⩾ 2µ( f (x)− f ∗) for all x . Applying it in
(6.8) yields

E j

�

f (xk+1)
�

⩽ f (xk)− µ
d L̄
( f (xk)− f ∗). (6.10)

By taking the total expectation, we get

E
�

f (xk+1)− f ∗
�

⩽
�

1− µ
d L̄

�

( f (xk)− f ∗),

and the proof follows by iterating the inequality above. ■

This rate is again strictly worse than that of gradient descent. However, if the algorithm update
is much cheaper, it may be still advantageous.
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Exercise 6.5 Prove that if f is µ-strongly convex and differentiable, then

∥∇ f (x)∥2 ⩾ 2µ( f (x)− f ∗).

■

Comments
1. We can improve the convergence rate of coordinate methods by incorporating acceleration.

Roughly speaking, the acceleration idea works the same way as for the basic GD, but for
the coordinate variant we have to be more careful not to use full vector-vector operations.
For more details see [3, 4] and the review paper [6].

2. Instead of coordinates, we could also use block of coordinates. This is more or less should
be straightforward.

3. One can also analyze the cyclic version of coordinate method, see paper [2] or the
exposition in [7, Chapter 6], also a more general version in [1, Chapter 11].

4. Analysis of the greedy rule can be found in [5].
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Lecture 7: Randomized Kaczmarz method

7.1 Kaczmarz Algorithm
We want to solve a linear system Ax = b for given A∈ Rm×n and b ∈ Rm. We assume that this
system is feasible (that is it has a solution). Let S denote the set of all solutions and a1, . . . , am
denote the rows of A. Then the linear system can be written as

〈ai , x〉= bi , i = 1, . . . , m.

SGD. If the linear system Ax = b has a solution, then we can equivalently solve the least
squares problem

min
x

F(x) :=
1

2m
∥Ax − b∥2 = 1

2m

m
∑

i=1

(〈ai , x〉 − bi)
2,

where we put factor 1
2m for mere convenience. Let Fi(x) =

1
2(〈ai , x〉− bi)2. The problem above

is a finite sum minimization. And hence, we can apply SGD:

xk+1 = xk −αk∇F j(x
k)

= xk −αk(〈a j , xk〉 − b j)a j , (7.1)

where j is sampled uniformly at random and αk > 0 is a stepsize.

Coordinate descent for dual. The system Ax = b may have many solutions (actually
infinitely many). It makes sense to seek the least-norm solution, which is given by

min
x

1
2
∥x∥2 s.t. Ax = b. (7.2)

This is a constrained optimization problem. Let’s instead consider its dual problem:

min
x∈Rn

max
y∈Rm

1
2
∥x∥2 + 〈Ax − b, y〉= max

y∈Rm
min
x∈Rn

1
2
∥x∥2 + 〈Ax − b, y〉= max

y∈Rm
−1

2
∥A⊤ y∥2 − 〈b, y〉

Thus, now we can solve instead

min
y

f (y) :=
1
2
∥A⊤ y∥2 + 〈b, y〉

and from a solution y∗ of this problem we will be able to recover the primal solution x∗ =
−A⊤ y∗.
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We have ∇ f (y) = AA⊤ y + b and thus ∇i f (y) = 〈ai , A⊤ y〉+ bi, where ai ∈ Rn is the i-th
row of A. Hence, the coordinate descent for miny f (y) is

yk+1 = yk −αk(〈a j , A⊤ yk〉+ b j) · e j ,

where αk > 0 is some stepsize. Now we use the standard trick. We don’t want to compute
A⊤ yk in every iteration. If we multiply both sides by −A⊤ and use the change of variables
xk := −A⊤ yk, then

xk+1 = xk +αk(〈a j , A⊤ yk〉+ b j) · A⊤e j

== xk −αk(〈a j , xk〉 − b j)a j .

What we see now it that this is exactly the same update as we got by SGD in (7.1). This already
implies that we don’t need to use a small stepsize for this method as SGD requires.

7.1.1 Kaczmarz algorithm
Stefan Kaczmarz in 1937 suggested [1] the following purely geometric method. Take any
x0 ∈ Rn and project it onto the hyperplane defined by the first row 〈ai , x〉 = bi . In other words,

x1 = argmin
x : 〈a1,x〉=b1

∥x − x0∥2,

which can be computed explicitly as

x1 = x0 +
b1 − 〈a1, x0〉
∥a1∥2

a1. (7.3)

Now project x1 onto the hyperplane defined by the second row and so on. This method later
was generalize to arbitrary convex closed sets and known as the cyclic projection method. One
can prove that in the case of a linear system this method linearly converges to a solution, but it
is not clear how to obtain convergence rate explicitly. Actually, Kaczmarz in his paper didn’t
even prove its convergence but only noticed “The convergence of this method is obvious from
a geometric perspective”1.

Looking once more at the update (7.3), we see that it is the same update as described
earlier. The only difference is that the original Kaczmarz method selects j in a cyclic order.
We will see that the analysis of the method becomes much easier when we introduce some
randomness.

7.1.2 Randomized Kaczmarz algorithm
We consider the same update

xk+1 = xk − 〈a j , xk〉 − b j

∥a j∥2
a j , (7.4)

but this time we chose the j-th row is a certain randomized way. We consider two main
strategies.

1“Die Konvergenz des Verfahrens ist geometrisch ohne weiteres einleuchtend”
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Uniform sampling. Let us select each j uniformly with probability 1
m . Choose any solution

x∗ and note that xk − xk+1 ⊥ xk+1 − x∗. Taking the conditional expectation with respect to j,
we obtain

Ek

�∥xk+1 − x∗∥2�= ∥xk − x∗∥2 − Ek

�∥xk+1 − xk∥2� Pythagoras’ theorem

= ∥xk − x∗∥2 − Ek

� |〈a j , xk〉 − b j|2
∥a j∥2

�

= ∥xk − x∗∥2 −
m
∑

i=1

1
m
|〈ai , xk〉 − bi|2
∥ai∥2

definition of expectation

⩽ ∥xk − x∗∥2 − 1

m∥A∥22,∞
∥Axk − b∥2 ∥A∥22,∞ :=max

i
∥ai∥2

= ∥xk − x∗∥2 − 1

m∥A∥22,∞
∥A(xk − x∗)∥2 Ax∗ = b.

In general, ∥A∥p,q defines the induced operator norm as ∥A∥p,q :=maxx ̸=0
∥Ax∥q
∥x∥p .

Exercise 7.1 Using the definition above, show that ∥A∥2,∞ =maxi ∥ai∥. ■

It would be nice to get a bound like ∥A(xk − x∗)∥2 ⩾ c∥xk − x∗∥2, which is equivalent to

〈A⊤A(xk − x∗), xk − x∗〉⩾ c∥xk − x∗∥2. (7.5)

The matrix A⊤A is symmetric positive semidefinite with eigenvalues 0 ⩽ λ1 ⩽ . . . ⩽ λn. If
λ1 > 0, that is A⊤A was positive definite, then, we could obviously take c = λ1. In general, this
is not true. But if we choose x∗ ∈ S in a special way, in particular as

x∗ = PS xk = argmin
x : Ax=b

∥x − xk∥2,

then it must hold that xk − x∗ ⊥ ker(A). Hence, in fact (7.5) holds with c = λ+, where
λ+ is the minimal nonzero eigenvalue of A⊤A. Note that for this particular x∗, it holds that
∥xk − x∗∥= dist(xk, S) by definition.

Thus, we can continue

Ek

�∥xk+1 − x∗∥2�⩽ ∥xk − x∗∥2 − λ+

m∥A∥2∞,2

∥xk − x∗∥2

=

�

1− λ+

m∥A∥2∞,2

�

dist(xk, S)2.

Note that we can lower bound the left-hand side by ∥xk+1 − x∗∥2 ⩾ dist(xk+1, S)2. Therefore,

Ek

�

dist(xk+1, S)2
�

⩽

�

1− λ+

m∥A∥2∞,2

�

dist(xk, S)2. (7.6)

As a sanity check, let’s verify that this rate is meaningful, that is

0⩽ 1− λ+

m∥A∥2∞,2

< 1.

The right inequality is clear, since λ+ > 0 by definition. The left one is equivalent to

λ+(A
⊤A)⩽ m∥A∥2∞,2.
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Indeed, it is true by

λ+(A
⊤A)⩽

n
∑

i=1

λi(A
⊤A) = tr(A⊤A) = ∥A∥2F =

m
∑

i=1

∥ai∥2 ⩽ m∥A∥2∞,2. (7.7)

Exercise 7.2 Prove that if x∗ = PS xk = argminx : Ax=b ∥x − xk∥2, then xk − x∗ ⊥ ker(A). ■

Finally, we can formulate the following result.

Theorem 7.1 Kaczmarz algorithm (7.4) with uniform sampling P [ j = i] = 1
m satisfies

E
�∥xk − x∗∥2�=

�

1− λ+

m∥A∥2∞,2

�k

dist(x0, S)2,

where λ+ is the smallest nonzero eigenvalue of A⊤A.

Non-uniform sampling. In the previous analysis we use a crude inequality ∥ai∥2 ⩽ ∥A∥2∞,2.
This is possible to avoid if we sample rows of A based on their “importance”. That was an
insightful idea of Strohmer & Vershynin [2]. In particular, we shall sample j with probability

P [ j = i] =
∥ai∥2
∥A∥2F

.

Borrowing the analysis from the previous case, we have

Ek

�∥xk+1 − x∗∥2�= ∥xk − x∗∥2 − E

� |〈a j , xk〉 − b j|2
∥a j∥2

�

= ∥xk − x∗∥2 −
m
∑

i=1

∥ai∥2
∥A∥2F
|〈ai , xk〉 − bi|2
∥ai∥2

definition of expectation

= ∥xk − x∗∥2 − 1

∥A∥2F

m
∑

i=1

∥A(xk − x∗)∥2

Doing the same tricks as above, that is selecting x∗ = PS xk, we deduce

Ek

�

dist(xk+1, S)2
�

⩽
�

1− λ+(A
⊤A)

∥A∥2F

�

dist(xk, S)2.

Inequality (7.7) immediately tells us that (i) this rate is meaningful and (ii) it is better than
that in (7.6). We can summarize it as following.

Theorem 7.2 Kaczmarz algorithm (7.4) with selecting the j-th row as P [ j = i] = ∥ai∥2
∥A∥2F

satisfies

E
�∥xk − x∗∥2�=

�

1− λ+∥A∥2F

�k

dist(x0, S)2,

where λ+ is the smallest nonzero eigenvalue of A⊤A.

Question: We have a linear system Ax = b and we can scale its rows as we wish. Isn’t it a
bit strange that this “importance sampling” rule controls the convergence rate?
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Lecture 8: Variance reduction

Probability reminder. Let X , Y be (one-dimensional) random variables. The variance of X is
defined as Var [X ] = E

�

(X − E [X ])2
�

. The covariance of X and Y is defined as

cov (X , Y ) = E [(X − E [X ]) · (Y − E [Y ])].

Evidently, Var [X ] = cov (X , X ).
If X is a random vector in Rd , the usual notion in probability is the covariance matrix

cov (X , X ) = E
�

(X − E [X ])(X − E [X ])⊤
� ∈ Rd×d .

However, sometimes in the probability literature this may be also called a variance of X .
Unfortunately, this contradicts a common convention in optimization to call the variance a
much simpler object

Var [X ] = E
�

(X − E [X ])⊤(X − E [X ])
�

= E
�∥X − E [X ]∥2�= E

�∥X∥2�− ∥E [X ]∥2 ∈ R. (8.1)

One can see that in this context, Var [X ] is just the trace of the covariance matrix cov (X , X ).
For this lecture, formula (8.1) is basically the only new thing we need to know in terms of
probability theory.

8.1 GD vs SGD

We consider f in the finite sum form f (x) = 1
n

∑n
i=1 fi(x) and assume that each fi is L-smooth.

For simplicity we also assume that f is µ-strongly convex function, although the same story
holds for convex functions (just with different rates).

Algorithms Convergence rate Iteration cost Complexity

Gradient descent O
�

L
µ

log 1
ϵ

�

n O
�

nL
µ

log 1
ϵ

�

Stochastic gradient method O
�

1
ϵ

�

1 O
�

1
ϵ

�

Table 8.1: Complexity results of GD and SGD to find x with f (x)− f∗ ⩽ ϵ for f = 1
n

∑

fi , strongly
convex case. We used a simplified expression for SGD
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In Table 8.1 one can see the convergence rate and the complexity (in the number of gradients
∇ fi) of GD and SGD. One can wonder if there is an optimization method with a convergence
rate between GD and SGD.

Another reason why we want to do this is that so far, smoothness hasn’t brought us any
advantages in the SGD case; it just allowed us to use more realistic assumptions (see Comments
in Lecture 5).

Consider the update
xk+1 = xk −αgk (8.2)

Many algorithms including GD and SGD can be put in the framework of (8.2).
We know that SGD is slow because it doesn’t use a full gradient information, in other words

it accumulates noise

gk ̸=∇ f (xk) =⇒ Var
�

gk
�

= E
�∥gk −∇ f (xk)∥2�> 0.

Now consider (8.2) with a new estimator

gk =∇ fik(x
k)−∇ fik(w) +∇ f (w),

where w is a certain deterministic vector. First notice that this is an unbiased estimator,
E
�

gk
�

=∇ f (xk). What can we choose instead of w?

• w= xk =⇒ gk =∇ f (xk). This is a very good estimator, but expensive.

• w= xk−10 =⇒ gk −∇ f (xk) =
�∇ fik(x

k)−∇ fik(x
k−10)

�

+
�∇ f (xk−10)−∇ f (xk)

�

.
Suppose we proved convergence of the proposed algorithm (with a new estimator).
Then (xk) converges to a solution and xk − xk−10→ 0. Hence, by continuity of ∇ f , we
conclude that gk −∇ f (xk)→ 0, that is Var

�

gk
�

decreases as k→∞. Of course, there
is nothing special in xk, we could use xk+1, xk+2 and so one — all with the same vector
w= xk−10. But we cannot use this w for ever, so from time to time we must also update
w.

The idea is as follows:

we will infrequently compute the full gradient and use it to improve our usual SGD estimator.

In optimization this idea goes back to the SVRG algorithm [1], that appeared in 2008. In
this lecture, however, we will consider another algorithm with the same complexity but with a
slightly simpler analysis [2].

Algorithm 1 Loopless SVRG

Parameters: stepsize α > 0, probability p = 1
n

Initialization: x0 = w0 ∈ Rd

for k = 0, 1,2, . . . do
Sample ik ∈ {1, . . . , n} uniformly at random
gk =∇ fik(x

k)−∇ fik(w
k) +∇ f (wk)

xk+1 = xk −αgk

wk+1 =

¨

xk with probability p

wk with probability 1− p
end for

R It may look a bit strange, if not annoying, that wk+1 does not use the most recent
information x k+1. After we have finished the analysis, try to see if it is possible to modify
the analysis so that we can use a better wk+1.
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8.2 Analysis
Before proceeding with the analysis, let’s introduce some quantities

Dk = 4α2
n
∑

i=1

∥∇ fi(w
k)−∇ fi(x

∗)∥2

Φk = ∥xk − x∗∥2 + Dk

Lemma 8.1

Ek

�∥xk+1 − x∗∥2�⩽ (1−µα)∥xk − x∗∥2 − 2α( f (xk)− f∗) +α2 Ek

�∥gk∥2� (8.3)

Proof. This is the standard inequality that we derived many times, where we additionally used
strong convexity of f . ■

Exercise 8.1 Complete the proof of Lemma 8.1. ■

Lemma 8.2

Ek

�∥gk∥2�⩽ 4L( f (xk)− f∗) +
1

2α2n
Dk (8.4)

Proof. We have

Ek

�∥gk∥2�= Ek

�∥∇ fik(x
k)−∇ fik(x

∗) +∇ fik(x
∗)−∇ fik(w

k) +∇ f (wk)∥2�

⩽ 2Ek

�∥∇ fik(x
k)−∇ fik(x

∗)∥2�+ 2Ek

�∥∇ fik(x
∗)−∇ fik(w

k) +∇ f (wk)∥2� (8.5)

For the first term we used the standard inequality that characterizes L-smooth functions (see
Lemma 8.3)

Ek

�∥∇ fik(x
k)−∇ fik(x

∗)∥2�⩽ 2L Ek

�

fik(x
k)− fik(x

∗)− 〈∇ fik(x
∗), xk − x∗〉�

= 2L( f (xk)− f∗).

For the second term, we only notice that

Ek

�∥∇ fik(x
∗)−∇ fik(w

k) +∇ f (wk)∥2�= Var
�∥∇ fik(w

k)−∇ fik(x
∗)∥2�

⩽ Ek

�∥∇ fik(w
k)−∇ fik(x

∗)∥2�

=
1
n

n
∑

i=1

∥∇ fi(w
k)−∇ fi(x

∗)∥2 = 1
4α2n

Dk.

■

Lemma 8.3 If ϕ is convex and L-smooth, then

ϕ(x)−ϕ(y)− 〈∇ϕ(y), x − y〉⩾ 1
2L
∥∇ϕ(x)−∇ϕ(y)∥2.

This lemma is very important in general in optimization. It tells us that for a convex L-smooth
functions our basic gradient inequality can be improved.
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Proof. Let us fix x , y and consider h(u) = ϕ(u)−ϕ(y)− 〈∇ϕ(y), u− y〉. The function h is
convex, nonnegative: h(u)⩾ 0 for all u, h is also L-smooth, and y ∈ argmin h. Hence, one step
of the gradient descent applied to h with the step α= 1

L and initial point x

x+ = x − 1
L
∇h(x)

by inequality (1.4) must satisfy

h(x+)⩽ h(x)− 1
2L
∥∇h(x)∥2.

Hence,

h(x)⩾ h(x+) +
1

2L
∥∇h(x)∥2 ⩾ 1

2L
∥∇h(x)∥2 = 1

2L
∥∇ϕ(x)−∇ϕ(y)∥2,

which is exactly the inequality we want to prove. ■

Lemma 8.4

Ek [Dk+1]⩽
�

1− 1
n

�

Dk + 8α2 L( f (xk)− f∗) (8.6)

Proof. We have

Ek [Dk+1] =
4α2

n

n
∑

i=1

∥∇ fi(xk)−∇ fi(x
∗)∥2 + 4α2(n− 1)

n

n
∑

i=1

∥∇ fi(wk)−∇ fi(x
∗)∥2

⩽ 8α2 L( f (xk)− f∗) +
�

1− 1
n

�

Dk,

where in the last inequality we again used Lemma 8.3 ■

Lemma 8.5 If α⩽ 1
6L , then

Ek [Φk+1]⩽ (1−µα)∥xk − x∗∥2 +
�

1− 1
2n

�

Dk.

Proof.

Ek [Φk+1]⩽ (1−µα)∥xk − x∗∥2 − 2α( f (xk)− f∗) +α2 Ek

�∥gk∥2�+
�

1− 1
n

�

Dk + 8α2 L( f (xk)− f∗)

⩽ (1−µα)∥xk − x∗∥2 − (2α− 4α2 L − 8α2 L)( f (xk)− f∗) +
�

1− 1
n
+

1
2n

�

Dk.

Since 6αL ⩽ 1, the desired inequality follows. ■

Theorem 8.1 Let α= 1
6L , then

E [Φk]⩽max
§

1− µ
6L

, 1− 1
2n

ªk

Φ0.

This implies E [Φk]⩽ ϵ as long as
k ⩾ O

��

n+
L
µ

�

log
Φ0

ϵ

�

.
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Exercise 8.2 Prove Theorem 8.1. ■

Comments
As I said at the beginning of the lecture, the same situation (albeit with different rates) occurs
when f is merely convex.
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Lecture 9: Mirror descent

R In this lecture ∥ · ∥2 denotes the Euclidean norm, ∥ · ∥ denotes an abstract norm in Rd .

9.1 Preliminaries
So far, we have worked exclusively with the Euclidean norm ∥ · ∥2. This choice was not only
for analysis but also for assumptions, such as all subgradients being bounded ∥g∥2 ⩽ G, or f
being µ-strongly convex with respect to ∥ ·∥2. However, sometimes the problem’s structure may
yield better estimates in a different norm. While in theory, we can switch between norms (as
all norms are equivalent in finite-dimensional spaces), this switch can introduce undesirable
constants. For example, if we have the bound ∥g∥∞ ⩽ G, switching to the Euclidean norm
results in ∥g∥2 ⩽

p
dG, adding a dimension-dependent factor to the algorithm’s complexity.

Today, we will learn how to use the problem’s geometry directly without relying on the
Euclidean structure.

We suppose that Rd is equipped with the primal norm ∥ ·∥. In turn, the primal norm defines
the dual norm

∥y∥∗ = max
∥x∥=1
〈y, x〉.

One can check that the dual of the ℓ2-norm is again the ℓ2-norm, the dual of the ℓ1-norm is the
ℓ∞-norm, and the dual of the ℓp-norm is the ℓq-norm for p > 1 and 1

p +
1
q = 1.

The definition of the dual norm implies the Hölder inequality 〈x , y〉⩽ ∥x∥∥y∥∗.
Exercise 9.1

1. Check the latter statement.
2. The Hölder inequality is obviously a generalization of the Cauchy-Schwarz inequality.

However, we usually prove the latter inequality properly, while for the Hölder we have
just said that it follows from the definition. Why is it so?

■

9.2 Bregman divergence
Consider minx∈C f (x), where C is a closed convex set and f : Rd → R is a convex function. If
f is differentiable, then we can apply the projected gradient method

xk+1 = argmin
x∈C

§

f (xk) + 〈∇ f (xk), x − xk〉+ 1
2α
∥x − xk∥22

ª

. (9.1)
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If we don’t want to use the Euclidean norm, perhaps the simplest solution would be to change
it to the abstract norm ∥ · ∥ in the update above. The easiest objection to such an atrocity is
that we need to keep our update simple. After all, (9.1) is another optimization problem, and
we don’t want to make it difficult to solve.

A better way to deal with our objective is to introduce Bregman’s divergence.

Definition 9.1 — Mirror map. A mirror map (or kernel) is a convex function h: Rd →
(−∞,+∞] such that

1. h is differentiable on dom∂ h;
2. C ⊂ dom h;
3. h is 1-strongly convex over C wrt ∥ · ∥.

Unfortunately, the definition is a bit more technical than we would like to have. For us it is
important to remember that h is a convex function with some nice properties.

Definition 9.2 — Bregman divergence. Given a mirror map h, the Bregman divergence (or
distance) D : domh× dom∂ h→ R is defined as

D(x , y) = h(x)− h(y)− 〈∇h(y), x − y〉.
We immediately obtain the following properties of D:

• D(x , y)⩾ 0.
• D(x , y) ̸= D(y, x) (in general).
• For all y , the function x 7→ D(x , y) is convex.
• D(x , y)⩾ 1

2∥x − y∥2.
Because of the second property, D is not a real distance. Nevertheless, nothing prevents us
from using it to measure the distance between x and y. If x and y are close, then from the
Taylor series it follows that D(x , y) ≈ 1

2〈∇2h(y)(x − y), x − y〉. In this sense, the function h
imposes its geometry on how we measure the distance between points.

Once we define D, we can formulate the mirror descent algorithm

xk+1 = argmin
x∈C

§

f (xk) + 〈∇ f (xk), x − xk〉+ 1
α

D(x , xk)
ª

.

Similarly, one can formulate a more general update using gk, which can represent a gradient,
subgradient, or stochastic (sub)gradient.

xk+1 = argmin
x∈C

§

f (xk) + 〈gk, x − xk〉+ 1
α

D(x , xk)
ª

. (9.2)

9.2.1 Examples
■ Example 9.1 Let C = Rd and h(x) = 1

2∥x∥22. Then it is easy to see that D(x , y) = 1
2∥x − y∥22,

hence we recover the usual Euclidean metric. ■

■ Example 9.2 Let C = Rd and h(x) = 1
2(p−1)∥x∥2p, p ∈ (1, 2]. Then one can check (we won’t)

that∇(x) = 1
p−1∥x∥2−p

p (sign x1|x1|p−1, . . . , sign xd |xd |p−1). We won’t substitute this into D, but
once we have h and ∇h, it is straightforward, just tedious. ■

The last example, while hiding behind the complexity of the formula, illuminates another
key point of mirror descent. It is useful to keep in mind that whenever we talk about gradients
or subgradients, these vectors live in dual space as opposed to x which lives in primal space.
On the other hand, the basic GD update uses addition between a primal vector xk and the
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dual vector ∇ f (xk). We don’t have a problem with this, because in finite dimensional space all
these spaces are equivalent. But if our original space were Lp, then the dual would be Lq, with
1
p +

1
q = 1, and then adding xk and ∇ f (xk) won’t be possible. This is where the mirror map

comes in. We have something like the following picture.

∇h

(∇h)−1

x k

x k+1

∇h(x k)

∇h(x k)−α∇ f (x k)

primal dual

One of the reasons we assumed so many things about h is that both ∇h and (∇h)−1 must be
well defined to make sense of that picture. If we have an additional constraint set C , the picture
above will look a bit different.

■ Example 9.3 Let C = ∆d = {x ∈ Rd
+ :
∑d

i=1 x i = 1}. The primal norm here will be ∥ · ∥1.
Hence, the dual is ∥ · ∥∞. For the mirror map h we choose the negative entropy

h(x) =

¨
∑d

i=1 x i log x i = 〈x , log x〉 if x ∈ Rd
++

+∞ otherwise.

Then this h induces the Bregman distance D

D(x , y) =
d
∑

i=1

x i log
x i

yi
= 〈x , log x − log y〉.

This is the famous Kullback-Leibler divergence, prominent in information theory, probability,
and statistics. Often it is denoted as KL(x ∥ y).

The fact that h is 1-strongly convex wrt ∥ · ∥1 is called the Pinsker inequality

D(x , y)⩾
1
2
∥x − y∥21.

It is a good exercise to think how to prove this inequality (relying on convexity tools should be
sufficient). ■

9.3 Analysis
The next identity will be fundamental for us.

Lemma 9.1 For a, b, c ∈ Rd it holds

D(a, c)− D(a, b)− D(b, c) = 〈∇h(b)−∇h(c), a− b〉. (9.3)
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Proof. We use D(a, c) = h(a)− h(c)− 〈∇h(c), a− c〉 and similar formulas for D(a, b), D(b, c)
and sum them up to get (9.3) ■

Exercise 9.2 Complete the proof of Lemma 9.1. ■

Exercise 9.3 What does identity (9.3) recover when D(x , y) = 1
2∥x − y∥22? ■

Now let’s analyse the algorithm (9.2). We can transform it as follows

xk+1 = argmin
x∈C

§

f (xk) + 〈gk, x − xk〉+ 1
αk

D(x , xk)
ª

= argmin
x∈C

�〈αk gk, x〉+ h(x)− 〈∇h(xk), x〉	

= argmin
x∈C

�〈αk gk −∇h(xk), x〉+ h(x)
	

(9.4)

Below we analyze MD in the stochastic setting. It is clear that the same proof works in the
deterministic, when we use subgradients for gk.

Theorem 9.1 Suppose that f : Rd → R is convex, Ek

�∥gk∥2� ⩽ G2, and D(x∗, x1) ⩽ R2.
Then the algorithm (4.7) satisfies

E
�

f ( x̄k)− f∗)
�

⩽
R2

∑K
k=1αk

+
G2
∑K

k=1 a2
k

2
∑K

k=1αk

,

where x̄K = 1
AK

∑K
k=1αk xk and AK =

∑K
k=1αk.

The proof we are going to study is the most instructive so far. It may look a bit longer that our
usual proof of the subgradient method or SGD, but it more natural and in fact is easier to come
up with.

Proof. We would like to use an analytical expression for xk+1, but the only thing we know
about it is that xk+1 is a solution of the optimization problem. Hence, let’s write down the
optimality condition that characterizes xk+1. Applying Corollary 3.1, we obtain

〈∇h(xk+1)−∇h(xk) +αk gk, x − xk+1〉⩾ 0 ∀x ∈ C .

Using identity (9.3), we obtain

D(x , xk+1) + D(xk+1, xk)⩽ D(x , xk) +αk〈gk, x − xk+1〉
= D(x , xk) +αk〈gk, x − xk〉+αk〈gk, xk − xk+1〉

⩽ D(x , xk) +αk〈gk, x − xk〉+ α
2
k

2
∥gk∥2∗ +

1
2
∥xk+1 − xk∥2, (9.5)

where in the last inequality we used Hölder’s inequality. By strong convexity of h, we have that
D(xk+1, xk)⩾ 1

2∥xk+1 − xk∥2. Hence, after taking expectation Ek from both sides, we arrive at

Ek

�

D(x , xk+1)
�

⩽ D(x , xk) +αk〈∇̃ f (xk), x − xk〉+ α
2
k

2
Ek

�∥gk∥2∗
�

⩽ D(x , xk)−αk( f (x
k)− f (x)) +

α2
kG2

2
. (9.6)
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From this moment, we set x = x∗. Taking the total expectation and summing over k = 1, . . . , K
yields

K
∑

k=1

αkE
�

f (xk)− f∗)
�

⩽ D(x∗, x1) +
G2

2

K
∑

k=1

α2
k ⩽ R2 +

G2

2

K
∑

k=1

a2
k .

Jensen’s inequality applied to the left-hand side completes the proof. ■

Corollary 9.1 — Fixed stepsize. If αk =
R
G

q

2
K for all k ∈ 1, . . . , K and x̄K = 1

K

∑K
k=1 xk,

then

E
�

f ( x̄K)− f∗
�

⩽ RG

√

√ 2
K
= O

�

RGp
K

�

.

Exercise 9.4 Why do we have a slightly different constant in the convergence rate than in
Corollary 4.2? ■

Obviously, we can also get a similar convergence rate by using a stepsize αk ∼ 1p
k

for
k ⩾ 1. This will result in an additional logarithmic factor, the same as in the Euclidean setting.
Finally, if C is a compact set, we can use a slightly more sophisticated analysis to get rid of this
logarithmic dependence (as in Theorem 3.2).

9.4 Mirror descent on the probability simplex
Let’s revisit Example 9.3. From the general update (9.4), we would like to derive an explicit
form for xk. In other words, we want to solve

xk+1 = argmin
x∈∆d

�〈αgk −∇h(xk), x〉+ h(x)
	

.

Since h(x) = 〈x , log x〉 for x ∈ ∆d and ∇h(x) = log x + 1, we have to solve an equivalent
problem

xk+1 = argmin
x∈∆d

{〈u, x〉+ 〈x , log x〉} , u := αgk − log x − 1.

This is a simple constraint optimization problem and we can find its solution analytically. We
have d + 1 constraints: d inequalities x i ⩾ 0 and one equality

∑

i x i = 〈1, x〉= 1. Assume first
that this problem has a solution x∗ with all positive entries. Then first d constraints won’t be
active and we can discard them. We can form a Lagrange function

L(x , y) = 〈u, x〉+ 〈x , log x〉+ y (〈1, x〉 − 1)

and write its optimality condition:

∇x L(x , y) = 0 ⇐⇒ u+ log x∗ + 1+ y∗1= 0

∇y L(x , y) = 0 ⇐⇒ 〈1, x∗〉= 1.

From this we obtain that x∗i = e−ui−1−y∗ = e−ui · β with β = e−1−y∗ . From the second equation
we obtain that β =

∑

i e−ui and hence

x∗i =
e−ui

∑d
j=1 e−u j

, i = 1, . . . , d.
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Notice that x∗ indeed has all positive coordinates, so our assumption in the beginning wasn’t
restrictive. Substituting back the value of u and using ◦ for the elementwise multiplication, we
get e−u = xk ◦ e−αgk

. Therefore, we arrive at the following update

yk = xk ◦ e−αgk

xk+1 =
yk

∥yk∥1
.

Now suppose we are given that ∥gk∥∞ ⩽ G. As we have discussed before, if we switch
to the Euclidean setting, we have to use ∥gk∥∞ ⩽

p
dG. To make comparison of Euclidean

vs non-Euclidean fair, we also should compare constants R, which we denote, for brevity, as
Rℓ1 = D(x∗, x1)1/2 and Rℓ2 = ∥x∗ − x1∥2.

For Euclidean case it’s easy, as Rℓ2 ⩽ diam∆d = 2. For mirror descent, by selecting x1 = 1
d 1,

we get
D(x , x1) = 〈x , log x − log x1〉= 〈x , log x〉+ log d ⩽ log d,

where the last inequality is the consequence of the fact that negentropy is non-positive on ∆d :

〈x , log x〉=
∑

i

x i log x i ⩽ 0 since log x i ⩽ 0 ∀i.

Therefore, Rℓ1 ⩽
p

log d. All together, we have the following bounds for E
�

f ( x̄K)− f∗
�

:

SGD: O

�

G
p

dp
K

�

vs. Mirror SGD: O

�

G
p

log dp
K

�

,

so at least in this case we can see a potential advantage of the mirror descent framework.

Comments
Unfortunately, in the most general case, a rigorous treatment of mirror descent — proving that
the iterates are well-defined, as well as their convergence — can be a bit technical. That’s why
we glossed over those details. Paper [2] or lecture notes [3] are a good short reference for
those who want more details. For a more thorough treatment, I recommend [1].
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[2] Amir Beck and Marc Teboulle. “Mirror descent and nonlinear projected subgradient
methods for convex optimization”. In: Operations Research Letters 31.3 (2003), pages 167–
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[3] John C Duchi. “Introductory lectures on stochastic optimization”. In: The mathematics
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Lecture 10: Weighted majority algorithm

10.1 Learning from expert advice
Today, we forget about our usual optimization algorithms and switch to a different context.
Alice plays T rounds of a game against the environment. In each round t, Alice must choose
between a binary decision: YES or NO. There are n experts available to help her decide, each
providing their own YES or NO recommendation. Alice then makes her choice and receives
feedback from the environment indicating her loss, which is 0 if she guessed correctly and 1
otherwise. Alice aims to minimize her total loss over T rounds. The environment can determine
the loss, as it pleases, and can be adversarial, potentially even knowing Alice’s algorithm. We
summarize the game below.

Rules of the game:
1. T rounds, n experts.
2. Alice receives prediction from each experts: YES or NO.
3. Alices makes its own prediction: YES or NO.
4. Alice receives a correct answer.

Given this, a reasonable strategy for Alice is to make uniformly random choices each round,
making it impossible for an adversarial environment to predict her moves1. In this scenario,
Alice would expect an average loss of T/2. This is the best guaranteed outcome for Alice
against an adversarial environment (we won’t prove it).

However, we are less interested in Alice’s total number of mistakes and more interested
in comparing her mistakes to those of the best expert. Thus, the only way for an adversarial
environment to cause Alice a significant loss is to create a sequence of loss functions that even
the best expert incurs a substantial loss.

Algorithm 2 Weighted Majority Algorithm (WMA)

Initialization: Fix α ∈ �0, 1
2

�

and w1(i) = 1 for every i ∈ [n].
for t = 1,2 . . . , T do

1. Make the prediction based on the weights wt(1), . . . , wt(n) (which one has a higher
total weight of experts).
2. Penalize wrong experts: for every expert i who predicts wrongly, set

wt+1(i) = (1−α)wt(i)
end for

1For this, we need to assume that the environment decides on the loss independently of Alice’s choice.
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Consider the Weighted Majority Algorithm given by Algorithm 2.
Let mt(i) be the number of expert i’s mistakes after t rounds and Mt be the number of

mistakes our algorithm has made.

Theorem 10.1 After T iteration, the WMA satisfies the following inequality for every i:

MT ⩽ 2(1+α)mT (i) +
2 log n
α

.

In particular, this holds for i with the smallest mT (i) (the best expert).

Proof. It is obvious that wt+1(i) = (1− α)mt (i). Let Φt = ∥wt∥1 =
∑

i wt(i) be the potential
function. In the beginning, we have Φ1 = n. Each time we make a mistake, the weighted
majority of experts also made a mistake, hence at least half of the total weight decrease by a
factor 1−α. Thus,

Φt+1 =
∑

right

wt+1(i) +
∑

wrong

wt+1(i) =
∑

right

wt(i) + (1−α)
∑

wrong

wt(i)⩽ Φt

�

1− α
2

�

.

A simple recursion gives ΦT+1 ⩽ n(1 − α/2)MT . On the other hand, ΦT+1 ⩾ wT+1(i) =
(1−α)mT (i). By combining these two bounds and using

log(1−α/2)⩽ −α/2, ∀α
−α−α2 ⩽ log(1−α), ∀α ∈

�

0,
1
2

�

,

we obtain the desired inequality. ■

10.2 Randomized weighted majority algorithm
In this version of the algorithm the player makes her decision randomly: she chooses an expert i
with probability pi =

wt (i)
∥wt∥1 at round t. The rest of the algorithm remains the same.

Theorem 10.2 After T iteration, for every i the randomized WMA algorithm satisfies

MT ⩽ (1+α)mT (i) +
log n
α

.

In particular, this holds for i with the smallest mT (i) (the best expert).

Proof. As before, let Φt = ∥wt∥1. Denote

∆t = Mt −Mt−1 is 1 if the algorithm made a mistake at round t and 0 otherwise

δt(i) = mt(i)−mt−1(i) is 1 if the ith expert made a mistake at round t and 0 otherwise

Notice that with this notation E [∆t] =
∑

i pt(i)δt(i). We have

Φt+1 =
∑

i

wt(i) (1−αδt(i)) = ∥wt∥1
�

1−α
∑

i

pt(i)δt(i)

�

= Φt (1−αE [∆t])⩽ Φt e
−αE[∆t ].

This implies ΦT+1 ⩽ ne−αE[MT ]. On the other hand, ΦT+1 ⩾ wT+1(i) = (1 − α)mT (i). By
combining these two bounds and using

log(1−α/2)⩽ −α/2, ∀α
−α−α2 ⩽ log(1−α), ∀α ∈

�

0,
1
2

�

,
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we obtain
−mT (i)α(1+α)⩽ log n−αE [MT ]

and the desired inequality follows immediately. ■

Let m∗T denote mT (i) for the bext expert i, then by choosing α∗ =
r

log n
m∗T

, we get

MT −m∗T ⩽ 2
q

m∗T log n.

Comments
More material on this and related topics can be found in [1].

References
[1] Elad Hazan. Introduction to online convex optimization. MIT Press, 2022.



Lecture 11: Multiplicative Weight Update

The concept of experts being right or wrong can be extended to arbitrary loss functions. At
each time t = 1, . . . , T , suppose the algorithm produces a probability vector pt ∈ ∆n, from
which we sample index it ∈ [n]. The adversary produces losses ℓt = (ℓt(1), . . . ,ℓt(n)), where
ℓt(i) represents the loss incurred by the i-th expert at time t. Our expected cost for sampling
decision it from pt is given by

E [ℓt(it)] = 〈ℓt , pt〉.
Therefore, the total expected cost over all rounds is

∑T
t=1〈ℓt , pt〉. After T rounds, once we

know all the losses ℓt , we (or the algorithm) regret not having followed the advice of the best
expert in hindsight. This regret is naturally expressed as

RegretT =
T
∑

t=1

〈ℓt , pt〉 − min
p∈∆n

T
∑

t=1

〈ℓt , p〉=
T
∑

t=1

〈ℓt , pt〉 −min
i∈[n]

T
∑

t=1

ℓt(i). (11.1)

(Explain the second equality above.) Notice that we consistently use the term “loss”, even
though we allow ℓt(i) to be negative, which actually represents gain.

Algorithm 3 Multiplicative Weights Update

Initialization: Fix α ∈ �0, 1
2

�

and w1(i) = 1 for every i ∈ [n].
for t = 1,2 . . . , T do

1. Sample a decision i from the probability distribution pt =
wt
∥wt∥1 .

2. Observe the loss ℓt = (ℓt(1), . . . ,ℓt(n)).
3. Update weights: wt+1(i) = wt(i)(1−αℓt(i)) for all i ∈ [n].

end for

Theorem 11.1 Suppose that ℓt(i) ∈ [−1, 1] for all t and i. Then the Multiplicative Weights
algorithm guarantees that after T iterations, for any decision i one has

T
∑

t=1

〈ℓt , pt〉 −
T
∑

t=1

ℓt(i)⩽ α
T
∑

t=1

|ℓt(i)|+
log n
α

We select the best expert i, use |ℓt(i)|⩽ 1 and the stepsize α=
Ç

log n
T to obtain the bound

RegretT ⩽ 2
Æ

T log n.
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Say, we have T = 10000 and n= 100. Then the bound above implies RegretT ⩽ 430, which is
not that bad, taking into account how many rounds we play.

Proof. Let Φt = ∥wt∥1 =
∑

i wt(i). We have

Φt+1 =
∑

i

wt+1(i) =
∑

i

wt(i)(1−αℓt(i)) = Φt −αΦt

∑

i

ℓt(i)pt(i)

= Φt(1−α〈ℓt , pt〉)⩽ Φt exp(−α〈ℓt , pt〉).
Thus, after T rounds, we have

ΦT+1 ⩽ Φ1 exp

�

−α
T
∑

t=1

〈ℓt , pt〉
�

= n exp

�

−α
T
∑

t=1

〈ℓt , pt〉
�

(11.2)

Next, we use

(1−α)x ⩽ 1−αx , ∀x ∈ [0,1]

(1+α)−x ⩽ 1−αx , ∀x ∈ [−1,0] (11.3)

For every i, we have

ΦT+1 ⩾ wT+1(i) =
T
∏

t=1

(1−αℓt(i))⩾ (1−α)
∑

⩾0 ℓt (i) · (1+α)−
∑

<0 ℓt (i). (11.4)

Taking logarithms in (11.5) and (11.4), we get

log n−α
T
∑

t=1

〈ℓt , pt〉⩾
∑

ℓt (i)⩾0

ℓt(i) log(1−α)−
∑

ℓt (i)<0

ℓt(i) log(1+α).

With some little algebra,

T
∑

t=1

〈ℓt , pt〉⩽
log n
α
+

1
α

∑

⩾0

ℓt(i) log
1

1−α +
1
α

∑

<0

ℓt(i) log(1+α)

⩽
log n
α
+

1
α

∑

⩾0

ℓt(i)(α+α
2) +

1
α

∑

<0

ℓt(i)(α−α2)

=
log n
α
+

T
∑

t=1

ℓt(i) +α
∑

⩾0

ℓt(i)−α
∑

<0

ℓt(i)

=
log n
α
+

T
∑

t=1

ℓt(i) +α
T
∑

t=1

|ℓt(i)|,

where we used log( 1
1−α)⩽ α+α

2 and log(1+α)⩾ α−α2 for α ∈ (0,1/2). ■

11.1 The Hedge algorithm
Instead of updating weights by multiplying with factors (1−αℓt(i)), we can use exponential
factor:

wt+1(i) = wt(i) · e−αℓt (i).

With this change, previous MWA becomes the Hedge algorithm. Since α is a small number (from

previos analysis we know that optimal α∗ =
Ç

log n
T ), the approximation e−αℓt (i) ≈ 1−αℓt(i)

suggest that both algorithm should perform similarly.
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Theorem 11.2 Suppose ℓt(i) ∈ [−1, 1] and α ∈ (0, 1]. Then the Hedge algorithm guarantees
that after T rounds, for any decision i,

T
∑

t=1

〈ℓt , pt〉 −
T
∑

t=1

ℓt(i)⩽ α
T
∑

t=1

〈ℓ2t , pt〉+
log n
α

.

Proof. For Φt = ∥wt∥1, we have

Φt+1 =
∑

i

wt(i)e
−αℓt (i)

= Φt

∑

i

pt(i)e
−αℓt (i)

⩽ Φt

∑

i

pt(i)
�

1− aℓt(i) +α
2ℓ2t (i)

�

e−x ⩽ 1− x + x2 for |x |⩽ 1

= Φt(1−α〈ℓt , pt〉+α2〈ℓ2t , pt〉)
⩽ Φt exp

�−α〈ℓt , pt〉+α2〈ℓ2t , pt〉
�

1− x ⩽ e−x for all x .

Thus, after T rounds, we have

ΦT+1 ⩽ n exp
T
∑

t=1

(−α〈ℓt , pt〉+α2〈ℓ2t , pt〉). (11.5)

Now, a lower bound. For every i, we have

ΦT+1 ⩾ wT+1(i) = wT e−αℓT (i) = exp

�

−α
T
∑

t=1

ℓt(i)

�

.

Combining two bounds and taking the logarithm, we obtain

−
T
∑

t=1

ℓt(i)⩽ log n+
T
∑

t=1

(−α〈ℓt , pt〉+α2〈ℓ2t , pt〉),

which is equivalent to the desired inequality. ■

11.1.1 Analysis via mirror descent
Notice, that we can express the Hedge algorithm as

pt(i) =
wt(i)
∥wt∥1

wt+1(i) = wt(i) · exp(−αℓt(i)).

We can rewrite it as

wt+1(i) = wt(i) · exp(−αℓt(i))

pt+1(i) =
wt+1(i)
∥wt+1∥1

.

Since we care only about pt (the weights wt are only auxiliary), the above scheme generates
the same pt as

wt+1(i) = pt(i) · exp(−αℓt(i))

pt+1(i) =
wt+1(i)
∥wt+1∥1

.
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But the latter algorithm is exactly the update of mirror descent on the probability simplex! At
first glance, it may seem strange since we previously minimized a single function f , which
is not present here. In fact, the mirror descent framework is more general. Suppose we run
mirror descent in each iteration with a different function ft(p) = 〈ℓt , p〉, using its gradient
∇ ft(p) = ℓt . Since the analysis of mirror descent involved only one iteration before summation,
inequality (9.6) will still hold:

D(p, pt+1)⩽ D(p, pt) +α〈∇ ft(pt), p− pt〉+
α2∥ℓt∥2∗

2

= D(p, pt) +α〈ℓt , p− pt〉+
α2∥ℓt∥2∞

2
.

Compared to (9.6), here we removed the expectation, since ∇ ft is a deterministic gradient of
ft . We changed xk to pt to match with the previous material, used a fixed stepsize α, and a
particular dual norm ∥ · ∥∗ = ∥ · ∥∞.

Hence, we obtain

〈ℓt , pt − p〉⩽ 1
α
(D(p, pt)− D(p, pt+1)) +

α∥ℓt∥2∞
2

.

Summing up this inequality over t = 1, . . . , T and using that D(p, p1)⩽ log n for p1 =
1
n1 (as

we proved before), we deduce

T
∑

t=1

〈ℓt , pt〉 −
T
∑

t=1

〈ℓt , p〉⩽ log n
α
+
α

2

T
∑

t=1

∥ℓt∥2∞.

Hence, we can conclude

RegretT =
T
∑

t=1

〈ℓt , pt〉 − min
p∈∆n

T
∑

t=1

〈ℓt , p〉⩽ log n
α
+
α

2

T
∑

t=1

∥ℓt∥2∞.

This is a very similar bound to the one we have in Theorem 11.2. There the right-hand side
can be estimated as

RHS in Th. (11.2)= α
T
∑

t=1

〈(ℓ2t , pt〉+
log n
α
⩽ α

T
∑

t=1

∥ℓt∥2∞∥p∥1 +
log n
α
=

log n
α
+

T
∑

t=1

∥ℓt∥2∞.

If we compare those final bounds, then MD is slightly sharper — it has an extra 1
2 . However,

the original bound of the Hedge algorithm in Theorem 11.2 used 〈(ℓ2t , pt〉 and this can be much
smaller than ∥ℓt∥2∞.

Comments
MWU algorithm is extremely popular in the theoretical computer science community. A nice
review on it with many applications and historical developments can be found in [1]. There is
also a nice series of blogposts on it.

References
[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. “The multiplicative weights update method:

a meta-algorithm and applications”. In: Theory of computing 8.1 (2012), pages 121–164.

https://lucatrevisan.wordpress.com/2019/04/24/online-optimization-post-1-multiplicative-weights/


Lecture 12: Two-person zero-sum games

12.1 Introduction
Today we continue playing games, but this time there are two players. A zero-sum means is
that one player’s loss is the other player’s gain and vice versa.

■ Example 12.1 — Hider vs. Chooser. Hider has two 1-euro coins. He either places one coin
in his left hand (leaving the right hand empty) or both coins in his right hand. Chooser then
picks a hand and takes all the coins in it. Without an extra bonus, Hider is at a disadvantage,
so the question is: how much should Chooser pay Hider to make the game fair?

Formally, we can represent this situation with the following table from Chooser’s perspective:

Chooser
Hider

L R

L 1 0
R 0 2

From the table, we see that no deterministic strategy will satisfy Hider. Therefore, suppose
Hider plays probabilistically. Let Hider choose the first column with probability y1 and the
second column with 1− y1. In the worst case, Hider’s average loss, if Chooser plays optimally,
is max{y1, 2(1− y1)}. Naturally, Hider wants to minimize this quantity:

min
y1

max{y1, 2(1− y1)}.

This can be easily solved, yielding y1 =
2
3 with the value of that quantity also being 2

3 .
Analogously, solving the maximization problem from Chooser’s perspective, we obtain:

max
x1

min{x1, 2(1− x1)}=
2
3

.

This is called the value of the game — the value Chooser can guarantee to gain and Hider to
lose (on average). Neither player has an incentive to deviate from their strategy.

To make this a fair game, Chooser must pay Hider 2/3 euros. Hider wouldn’t accept anything
less, and anything more would be a loss for Chooser.

■
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12.2 Zero-sum games
A two-person zero-sum game is described as follows. We have an m× n matrix A, called the
payoff matrix. Simultaneously, Player I selects action i (the i-th row) and Player II selects
action j (the j-th column). Their selections are revealed, and Player II pays Player I ai j . Note
that a negative gain becomes a loss and vice versa, but for convenience, we always refer to
these as gains for Player I and losses for Player II.

Player I picks the i-th row, aiming to maximize his worst-case gain:

max
i∈[m]

min
j∈[n]

ai j .

Similarly, Player II picks the j-th column, aiming to minimize her worst-case loss:

min
j∈[n]

max
i∈[m]

ai j .

In general, these two quantities are not equal, and we always have:

Player I’s gain= max
i∈[m]

min
j∈[n]

ai j ⩽ min
j∈[n]

max
i∈[m]

ai j = Player II’s loss.

This inequality is unsatisfactory for both players. Instead, players should play probabilisti-
cally.

Definition 12.1 A strategy in which action is selected with some probability is called a mixed
strategy.

We denote by x ∈∆m the strategy of Player I and by y ∈∆n the strategy of Player II. That is

P [pick i-th row] = x i and P [pick j-th column] = y j .

A strategy, where some action is played with probability 1 is called a pure strategy; in other
words these are orthonormal vectors (ei)mi=1 and (e j)nj=1.

With such randomization, it is easy to see that the expected gain of Player I and the expected
loss of Player II is

x⊤Ay =
∑

i∈[m]

∑

j∈[n]
x iai j y j .

If Player I uses strategy x , then he can guarantee (in average)

min
y∈∆n

x⊤Ay =min
j
(A⊤x) j . (12.1)

Hence, he wants to choose x to maximize his gain, that is

max
x∈∆m

min
y∈∆n

x⊤Ay.

Similarly, Player II wants to minimize her loss, that is

min
y∈∆n

max
x∈∆m

x⊤Ay.

The following result signifies importance of probabilistic strategies.

Theorem 12.1 von Neumann’s Minimax theorem. For any m× n payoff matrix A,

max
x∈∆m

min
y∈∆n

x⊤Ay = min
y∈∆n

max
x∈∆m

x⊤Ay =: v.

The number v is called the value of the game.
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Definition 12.2 A strategy (i∗, j∗) such that maxi ai j∗ = ai∗ j∗ =min j ai∗ j is calles a pure Nash
equilibrium (which may not exist). A probabilistic strategy (x∗, y∗) such that

min
y∈∆n
〈x∗, Ay〉= 〈x∗, Ay∗〉= max

x∈∆m
〈x , Ay∗〉

is called a Nash equilibrium. Both (i∗, j∗) and (x∗, y∗) are also called saddle point.

As a consequence of (x∗, y∗) being a saddle point, we immediately have

min
x∈∆m
〈x , Ay∗〉⩽ 〈x∗, Ay∗〉⩽ max

y∈∆n
〈x∗, Ay〉. (12.2)

12.3 Solving minimax
Now the question is how to find a Nash equilibrium? In orther words, we would like to solve

min
y∈∆n

max
x∈∆m
〈x , Ay〉.

We will show how MWU/Hedge algorithms can be applied to this problem. Let Player II
be our player in the Hedge algorithm, where the columns she chooses are our “experts.”
Player II wants to understand which columns perform well and which do not when Player I
plays optimally. For each strategy yt ∈ ∆n that Player II adopts, Player I’s best response is
x t = argmaxx∈∆m〈x , Ayt〉= eit

, where it = arg maxi∈[m](Ayt)i. Thus, for each j ∈ [n] drawn
from yt , Player II has to pay Player I ait j = (A⊤x t) j . Consequently, it is natural to consider the
loss vector ℓt = A⊤x t . Over time, this allows Player II to identify which columns are “good”
and which are “bad.”

Algorithm 4 Multiplicative Weights Update/Hedge for zero-sum games

Initialization: Fix α ∈ �0, 1
2

�

and w1( j) = 1 for every j ∈ [n].
for t = 1,2 . . . , T do

1. Sample a decision j from the probability distribution yt =
wt
∥wt∥1 .

2. Observe the loss ℓt = A⊤x t , where

x t = argmax
x∈∆m

〈x , Ayt〉= argmax
i∈[m]

(Ayt)i .

3. Update weights: wt+1( j) = wt( j)e−αℓt ( j) for all j ∈ [n].
end for

Theorem 12.2 Let A be a m × n payoff matrix, (x∗, y∗) be its saddle point, and ϵ > 0.

Suppose that T =
4∥A∥2∞ log n

ϵ2 and α =
Ç

log n
T = ϵ

2∥A∥∞ . Then Algorithm 4 after T iterations
approximates the value of the game as

〈x∗, Ay∗〉⩽ 1
T

T
∑

t=1

〈x t , Ayt〉⩽ 〈x∗, Ay∗〉+ ϵ.

Moreover, the strategy ȳT =
1
T

∑T
t=1 yt is ϵ-optimal strategy for Player II

〈x∗, Ay∗〉⩽ 〈x∗, AȳT 〉⩽ 〈x∗, Ay∗〉+ ϵ.
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Proof. We want to apply the bound from Theorem 11.2, but for this we had to assume that
ℓt( j) ∈ [−1,1]. Since ℓt is just a row of A, we could redefine our losses in the algorithm by
ℓt
∥A∥∞ . This is just a scalar that doesn’t change the behavior of the algorithm. Hence, we have

T
∑

t=1

ℓt(yt)
∥A∥∞

−
T
∑

t=1

ℓt(y∗)
∥A∥∞

⩽
log n
α
+

α

∥A∥2∞

T
∑

t=1

〈ℓ2t , yt〉

⩽
log n
α
+

α

∥A∥2∞

T
∑

t=1

∥ℓt∥2∞∥yt∥1

⩽
log n
α
+αT.

Hence, if we use α=
Ç

log n
T , we obtain

T
∑

t=1

ℓt(yt)−
T
∑

t=1

ℓt(y
∗)⩽ 2

Æ

T log n∥A∥∞.

Dividing both sides over T yields

1
T

T
∑

t=1

ℓt(yt)−
1
T

T
∑

t=1

ℓt(y
∗)⩽ 2

√

√ log n
T
∥A∥∞ = ϵ.

Now notice that ℓt(y∗) = 〈x t , Ay∗〉⩽ 〈Ax∗, y∗〉 by (12.2). Also,

ℓt(yt) = 〈x t , Ayt〉⩾ 〈x∗, Ayt〉⩾ 〈x∗, Ay∗〉.
Combining them, we get

〈x∗, Ay∗〉⩽ 1
T

T
∑

t=1

〈x∗, Ayt〉⩽
1
T

T
∑

t=1

ℓt(yt) =
1
T

T
∑

t=1

〈x t , Ayt〉⩽ 〈x∗, Ay∗〉+ ϵ,

which is the desired inequality. Note that for Player II, ȳT =
1
T

∑T
t=1 is indeed an ϵ-optimal

strategy, since

〈x∗, Ay∗〉⩽ 1
T

T
∑

t=1

〈x∗, Ayt〉= 〈x∗, AȳT 〉⩽ 〈x∗, Ay∗〉+ ϵ.

■

12.3.1 Subgradient method perspective
Notice that our problem can be cast as just a minimization problem miny∈∆n ϕ(y), with

ϕ(y) = max
x∈∆m
〈x , Ay〉.

The function ϕ is convex as the maximum of convex functions, but obviously not differentiable.
Its subdifferential can be computed in the standard way

∂ ϕ(y) =
§

A⊤x : x ∈ argmax
x∈∆m

〈x , Ay〉
ª

.

To summarize, we have a constrained problem with a convex function ϕ, whose subgradints
are easy to compute. We have all the ingredients to apply the projected subgradient method1

xk = argmax
x∈∆m

〈x , Ayk〉
yk+1 = P∆n(yk −αA⊤xk) //since e∇ϕ(yk) = A⊤xk.

1For simplicity, we choose any subgradient A⊤xk.
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For simplicity, we used above a fixed stepsize α. There is no explicit formula for the projection
onto the simplex ∆n, but the algorithm that computes it is quite efficient with complexity
O(n log n).

12.3.2 Mirror descent perspective
Since our minimization problem is constrained in the unit simplex, it is natural to apply the
mirror subgradient method for ℓ1-metric (with the kernel map being a negentropy). This yields
the following update

xk = argmax
x∈∆m

〈x , Ayk〉

wk+1 = yk ◦ e−αA⊤xk //since e∇ϕ(yk) = A⊤xk

yk+1 =
wk+1

∥wk+1∥1
.

Comparing it with Algorithm 4, we see they are almost identical (the difference in indices
k and t is only cosmetic). The more substantial difference is that mirror descent uses wk+1 =
yk ◦ e−αℓk instead of wk+1 = wk ◦ e−αℓk . However, this shouldn’t make any difference for the
Hedge algorithm, since yk is just a scaling of wk, and both updates lead to the same yk.

Comments

Exercise 12.1 Explain equality sign in (12.1). ■



Lecture 13: Stochastic Mirror descent for
zero-sum games

R In this lecture we swap x and y , to make it consistent with existing literature. All results
from the previous lecture hold subject to this change.

13.1 Zero-sum games
Previously, we saw that the Hedge algorithm (or subgradient method) has a convergence rate
of O

� 1
ϵ2

�

with a cost of O(mn) per iteration, resulting in a total complexity of O
�mn
ϵ2

�

. There
are two ways to improve this complexity:

1. Achieve an ϵ−1 dependency instead of ϵ−2.
2. Maintain ϵ−2 but reduce the iteration cost O(mn).

Today, we will consider the latter. Before proceeding, let’s swap x and y from the previous
lecture, as it is typical to solve minimization problems over x and maximization problems over
y . Hence, our problem now is:

min
x∈∆n

max
y∈∆m
〈Ax , y〉

and for every saddle point (x∗, y∗), it holds that:

min
x∈∆n
〈Ax , y∗〉= min

x∈∆n
max
y∈∆m
〈Ax , y〉= max

y∈∆m
〈Ax∗, y〉= 〈Ax∗, y∗〉. (13.1)

Moreover, if for given x , y one has that

max
y ′∈∆m
〈Ax , y ′〉= v,

where v is the value of the game, then then we may conclude that x is a primal solution and
similarly for y .

Definition 13.1 Given a pair (x , y), the primal-dual gap is defined as

PD(x , y) = max
y ′∈∆m
〈Ax , y ′〉 − min

x ′∈∆n
〈Ax ′, y〉.

Lemma 13.1 For every feasible (x , y), it holds that PD(x , y) ⩾ 0 and PD(x , y) = 0 if and
only if (x , y) is a saddle point.

Proof. Nonnegativity follows from

PD(x , y) = max
y ′∈∆m
〈Ax , y ′〉 − 〈Ax , y〉

︸ ︷︷ ︸

⩾0

+ 〈Ax , y〉 − min
x ′∈∆n
〈Ax ′, y〉

︸ ︷︷ ︸

⩾0

.
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Now if PD(x , y) = 0, then from above it follows that

max
y ′∈∆m
〈Ax , y ′〉= 〈Ax , y〉= min

x ′∈∆n
〈Ax ′, y〉

or, equivalently,

〈Ax , y ′〉⩽ 〈Ax , y〉⩽ 〈Ax ′, y〉 ∀(x ′, y ′) ∈∆n ×∆m,

which by definition implies that (x , y) is a saddle point. ■

Consider (13.1) again. Since we know that x∗, y∗ are solutions of the mostleft and mostright
problems there, we can write down optimality conditions:

〈A⊤ y∗, x − x∗〉⩾ 0 ∀x ∈∆n,

−〈Ax∗, y − y∗〉⩾ 0 ∀y ∈∆m.

These two inequalities are completely independent, so their system is equivalent to their sum,
which we cast in a matrix form

��

0 A⊤

−A 0

��

x∗

y∗

�

,

�

x
y

�

−
�

x∗

y∗

��

⩾ 0 ∀(x , y) ∈∆n ×∆m.

All these expression are a bit cumbersome to write, so after introducing some notations

z =

�

x
y

�

, z∗ =
�

x∗

y∗

�

, F =

�

0 A⊤

−A 0

�

, C =∆n ×∆m.

we can rewrite it as
〈F(z∗), z − z∗〉⩾ 0 ∀z ∈ C . (13.2)

This is called a variational inequality. We have already met this condition when studied
optimality condition for minx∈C f (x)— there our operator F was just the gradient ∇ f . This
time F is not a gradient of any function, still the optimality condition is very much the same.

13.2 Mirror descent for variational inequalities
Recalling the projected gradient method, it is tempting to consider the following scheme

zk+1 = PC(z
k −αkF(zk)).

or even more generally, the mirror descent method

zk+1 = argmin
z∈C

§

〈F(zk), z − zk〉+
1
αk

D(z, zk)
ª

,

where D is some Bregman distance. Despite F not being the gradient, we could use the same
arguments as we did before in Lecture 9. Repeating the derivation from (9.5), we obtain

D(z, zk+1) + D(zk+1, zk)⩽ D(z, zk) +αk〈F(zk), z − zk〉+ α
2
k

2
∥F(zk)∥2∗ +

1
2
∥zk+1 − zk∥2.

And after using D(zk+1, zk)⩾ 1
2∥zk+1 − zk∥2 (the consequence of strong convexity), we have

D(z, zk+1)⩽ D(z, zk) +αk〈F(zk), z − zk〉+ α
2
k

2
∥F(zk)∥2∗ .
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Before, 〈F(zk), z − zk〉 was handled by convexity. This time, notice that

〈F(zk), zk − z〉= 〈Axk, y〉 − 〈x , A⊤ yk〉
and

max
z∈C
〈F(zk), zk − z〉= max

y∈∆m
〈Axk, y〉 − min

x∈∆n
〈x , A⊤ yk〉= PD(xk, yk),

which can be also served as an optimality measure, similar to f (x) − f∗ for minimization
problems. We won’t finish the derivation for the deterministic case, as we’ll consider a more
general stochastic case.

All of the above can also be applied with a stochastic unbiased estimator Fξ of F . Suppose
we have access to Fξ such that E

�

Fξ(z)
�

= F(z). We can similarly consider a stochastic mirror
descent:

zk+1 = argmin
z∈C

§

〈Fξ(zk), z − zk〉+
1
αk

D(z, zk)
ª

.

The corresponding inequality will now be:

αk〈Fξ(zk), zk − z〉⩽ D(z, zk)− D(z, zk+1) +
α2

k

2
∥Fξ(zk)∥2∗ . (13.3)

Theorem 13.1 Let Fξ be an unbiased stochastic estimator of F , with E
�∥Fξ(z)∥2

�

⩽ G2 for all

z. Let R2 ⩾ D(z, z1) for all z ∈ C and let z̄K = ( x̄K , ȳK) = 1
AK

∑K
k=1αkzk and AK =

∑K
k=1αk.

Then the following inequality holds

PD(E
�

x̄K
�

,E
�

ȳK
�

) =max
z∈C

E
�〈F(z̄k), z̄k − z〉�⩽ R2

AK
+

G2
∑K

k=1α
2
k

2AK
. (13.4)

Proof. We take a conditional expectation in (13.3) to get

αk〈F(zk), zk − z〉⩽ D(z, zk)− Ek

�

D(z, zk+1)
�

+
α2

k

2
Ek

�∥F(zk)∥2∗
�

.

After taking the total expectation and telescoping we obtain

E

� K
∑

k=1

αk〈F(zk), zk − z〉
�

⩽ D(z, z1) +
1
2

K
∑

k=1

α2
k Ek

�∥F(zk)∥2∗
�

.

Using

E

� K
∑

k=1

αk

�〈Axk, y〉 − 〈x , A⊤ yk〉�
�

⩽ R2 +
1
2

K
∑

k=1

α2
kG2.

By linearity of expectation, we have

〈AE
�

x̄K
�

, y〉 − 〈x , A⊤E
�

ȳk
�〉⩽ R2

AK
+

1
2AK

K
∑

k=1

α2
kG2.

By maximizing the LHS over all (x , y) ∈ C , we derive the desired inequality. ■

R The quantity for which we obtain the convergence rate, PD(E
�

x̄K
�

,E
�

ȳK
�

) is weaker
than the more standard E

�

PD( x̄K , ȳK)
�

(similarly, as f (E
�

x̄K
�

) − f∗ is weaker than
E
�

f ( x̄ k)− f∗
�

). With a bit more work the same rate can be also shown for E
�

PD( x̄K , ȳK)
�

,
although with some additional multiplicative factors.
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Notice that the RHS in (13.4) is exactly the same as in Theorem 9.1. This shouldn’t be
surprising, since we were using essentially the same bounds. Therefore, with our standard
choice of stepsizes αk we can get the usual O( RGp

K
) convergence rate.

Now we would like to be more specific: we have to fix setting where we can calculate R
and G and devise a stochastic estimator Fξ. In general we need the following:

• Primal x-space (Rn,∥ · ∥), dual x-space (Rn,∥ · ∥∞).
• Primal y-space (Rm,∥ · ∥)1, dual y-space (Rm,∥ · ∥∞).
• Fix mirror functions h1 : Rn→ (−∞,+∞], h2 : Rm→ (−∞,+∞] with the usual good

properties.
• On Rn ×Rm we define the primal norm as ∥z∥ = (∥x∥2 + ∥y∥2)1/2. It induces the dual

norm ∥w∥∗ = ∥(u, v)∥∗ = (∥u∥2∗ + ∥v∥2∗)1/2. We set h(z) = h1(x) + h2(y) that defines
D(z, z′) = D1(x , x ′) + D2(y, y ′). If h1 and h2 are 1-strongly convex wrt their primal
norms, then D(z, z′)⩾ 1

2∥z − z′∥2.

■ Example 13.1 — ℓ2/ℓ2 case. We consider Rn × Rm with the primal norm ∥z∥ = (∥x∥22 +
∥y∥22)1/2, which is the usual ℓ2-norm on Rn ×Rm and the dual is the same. Let h(z) = 1

2∥x∥22 +
1
2∥y∥22 and D(z, z′) = 1

2∥x − x ′∥22 + 1
2∥x − x ′∥22. Since, x , x ′ ∈ ∆n and y, y ′ ∈ ∆m, we have

R2 = 4 or R= 2. ■

■ Example 13.2 — ℓ1/ℓ1 case. We considerRn×Rm with the primal norm ∥z∥ = (∥x∥21+∥y∥21)1/2
and the correspondent dual norm ∥w∥∗ = (∥x∥2∞ + ∥y∥2∞)1/2. Let h1(x) = 〈x , log x〉 for
x ∈ Rn

+ and +∞ otherwise. Similarly, for h2(y). We set h(z) = h1(x) + h2(y) and define
D(z, z′) = D1(x , x ′) + D2(y, y ′). As we have already computed for mirror descent before, if we
use z1 = ( 1

n1n, 1
m1m) we have R2 = log n+ log m= log mn. ■

Now we have to come up with a stochastic oracle Fξ that has a relatively low cost and estimate
E
�∥Fξ(z)∥2∗

�

for each case.

13.2.1 Stochastic oracle Fξ
Since computing F(z) basically involves two matrix-vector multiplications, we have to know
how to estimate such operations stochastically.

Let Aξ denotes the stochastic oracle for A, that is E
�

Aξx
�

= Ax . Since Ax = A:1 x1+· · ·+A:n xn,
it makes sense to consider

Aξx =
1
p j

A: j x j , P [ξ= j] = p j .

Obviously, this has a cost that is m times smaller than Ax .
Doing the same for A⊤, we end up with the following stochastic oracle for F :

Fξ(x , y) =

� 1
qi

Ai: yi
1
p j

A: j x j

�

, P [ξ= (i, j)] = p jqi ,

where we sample i and j independently. Now, based on the dual norm ∥ · ∥∗, we need to find
distribution p and q, so that inequality E

�∥Fξ(z)∥2∗
�

⩽ G2 holds for all z ∈ C .

ℓ1-geometry. In this case, we are interested in bounding E
�∥Fξ(z)∥2∗

�

= E
�

∥Aξ2
x∥2∞ + ∥A⊤ξ1

y∥2∞
�

.
Let us choose p j = x j and qi = yi . In other words,

Aξ2
x = A: j , P [ξ2 = j] = x j

1There shouldn’t be a confusion with x-space, since they have different dimensions.
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and similarly for y . We have

E
�∥Fξ(z)∥2∗

�

= E
�∥Aξ1:∥2∞ + ∥A:ξ2

∥2∞
�

⩽ 2∥A∥2∞ =: G2,

since for every i and j, ∥Ai:∥∞ ⩽ ∥A∥∞ and ∥A: j∥∞ ⩽ ∥A∥∞. Here ∥A∥∞ =maxi, j |Ai j|.
ℓ2-geometry. We want to bound

E
�∥Fξ(z)∥2∗

�

= E
�∥Aξ1: y∥22 + ∥A:ξ2

x∥22
�

.

Let us choose p j =
x2

j

∥x∥22
and qi =

y2
i

∥y∥22
. In other words,

Aξ2
x =

1
p j

A: j x j , P [ξ2 = j] = p j

and similarly for y . In particular, we have

E
�∥A:ξ2

x∥22
�

=
n
∑

j=1

x2
j

p j
∥A: j∥22 = ∥x∥22

n
∑

j=1

∥A: j∥22 = ∥x∥22∥A∥2F ⩽ ∥A∥2F ,

where we used that ∥x∥22 ⩽ ∥x∥21 = 1. The estimate for E
�∥Aξ1: y∥22

�

is similar. Hence, we can
conclude that

E
�∥Fξ(z)∥2∗

�

= E
�∥Aξ1: y∥22 + ∥A:ξ2

x∥22
�

⩽ 2∥A∥2F =: G2.

13.2.2 Comparison
We can summarize the obtained results in the following table

ℓ2/ℓ2-geometry ℓ1/ℓ1-geometry

Convergence rate O
� ∥A∥2Fp

K

�

O
� ∥A∥2∞ log mnp

K

�

It is clear that in most cases, convergence in the ℓ1/ℓ1-case is much better (log gives a small
constant and typically ∥A∥∞≪ ∥A∥F ). However, remember that this is a worst-case analysis
and may not always reflect the behavior in specific instances.

Now, the complexity of both methods must take into account an additional factor O(m+ n)
(vector-vector operations). This contrasts with deterministic algorithms that have the same
convergence rate but with a cost per iteration of O(mn) (matrix-vector multiplications).

Comments

References



Lecture 14: MAX-CUT

14.1 Introduction
Let G = (V, E) be a finite simple graph (no loops and double edges).

Definition 14.1 Given a partition of V into two disjoint sets, the cut is called the number of
edges crossing between these two sets. The maximum cut, MAXCUT(G), is the cut with the
maximum number of edges.

We are interested in approximating the value MAXCUT(G); computing it exactly is NP-hard.
Let n = |V | and label vertices 1, . . . , n. The adjacency matrix is an n×n matrix A with entries

ai j = 1 if vertices i and j are connected and ai j = 0 otherwise.
Every partition of V can be encoded by a binary vector x = (x1, . . . , xn) with x i ∈ {−1, 1};

the sign of x i indicates to which subset of vertices i belongs. Given such x , we write CUT(G, x)
to denote the corresponding cut. We have the following:

CUT(G, x) =
1
2

∑

i, j:x i x j=−1

ai j =
1
4

n
∑

i, j=1

ai j(1− x i x j). (14.1)

And hence,

MAXCUT(G) =
1
4

max

(

n
∑

i, j=1

ai j(1− x i x j): x i = ±1

)

. (14.2)

Lemma 14.1 0.5-approximation of MAX-CUT. Let us partiton V into two sets uniformly
at random (among all 2n subsets) and let x be a correspondent binary encoding of that
partition. Then

E [CUT(G, x)]⩾
1
2
|E|⩾ 1

2
MAXCUT(G).

Proof. The uniform partition means that x ∼ Unif({−1, 1}n) with independent entries. Thus, if
i ̸= j, then E

�

x i x j

�

= 0. Conversely, if i = j, then ai j = 0. Altogether, we conclude

E [CUT(G, x)] =
1
4

n
∑

i, j=1

ai j(1− E
�

x i x j

�

) =
1
2
|E|⩾ 1

2
MAXCUT(G).

■
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14.1.1 Interlude: linear and semidefinite programming
Linear programming. The most basic class of optimization problems is called a linear
programming. These are problems whose both objective and constraints are affine/linear:

min
x∈Rn
〈c, x〉

subject to 〈ai , x〉⩽ bi , i = 1, . . . , m

x ⩾ 0.

This class of problems is well-understood and we have efficient algorithms for solving them,
such as the simplex method and interior point methods.

Semidefinite programming. Similarly to linear programming, we can consider the problem
when X is a matrix. In this case, we use the usual inner product for matrices, 〈A, B〉= tr(A⊤B).
This yields a semidefinite program:

min
X∈Rn×n

〈C , X 〉
subject to 〈Ai , X 〉⩽ bi , i = 1, . . . , m

X ≽ 0.

Again similarly to linear programming, semidefinite problems can be efficiently solved by
interior point methods1

14.2 Semidefinite relaxation
Problem (14.2) is a discrete optimization problem. As is often the case with discrete optimiza-
tion, we will relax the problem to make it continuous and then apply methods from continuous
optimization to approximate its solution.

The idea of a relaxation is to use vectors X i ∈ Rn instead of numbers x i. Since before we
had that |x i|= 1, we will assume that ∥X i∥2 = 1. This yields

SDP(G) =
1
4

max

(

n
∑

i, j=1

ai j(1− 〈X i , X j〉): ∥X i∥2 = 1

)

. (14.3)

We immediately have that
MAXCUT(G)⩽ SDP(G).

Exercise 14.1 Explain why the inequality above holds true. ■

Let us explain why problem (14.3) is indeed a semidefinite program. Let X be an n× n matrix
with X i j = 〈X i , X j〉, such matrix is called the Gram matrix of vectors X1, . . . , Xn. We know that
X ≽ 0 and that X ii = 1. Hence, (14.3) can be reformulated as

max
X∈Rn×n

− 1
4
〈A, X 〉+ 1

2
|E|

subject to X ii = 1, i = 1, . . . , n

X ≽ 0.

It is clear that X ii = 1 are linear constraints (if not, show why). Hence, (14.3) is a semidefinite
problem and thus can be solved efficiently.

1As always, efficient may change its meaning when dimension n increases.
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Alternatively, one can come up with the same relaxation using the following arguments.
Problem (14.2) can be rewritten as

MAXCUT(G) =
1
4

max

(

n
∑

i, j=1

ai j(1− x i x j): x i = ±1

)

=
1
4

max {2|E| − 〈Ax , x〉: x i = ±1} .

Thus, ultimately, we are interested in minimizing 〈Ax , x〉. Note that

〈Ax , x〉= 〈A, x x⊤〉.

What can we say about x x⊤? It is a symmetric positive semidefinite matrix with all ones on
the main diagonal and, importantly, it is a rank-one matrix. The latter is a difficult constraint,
so we relax it to all positive semidefinite matrices whose diagonal elements are all ones. This
yields the same semidefinite program as above.

Now, given a solution X to SDP(G), how do we recover the actual partition x , and what
can we say about its cut? Recovery is done by the following procedure:

Randomized rounding:
1. Solve SDP(G) and let X be its solution.
2. Find M = [X1| . . . |Xn] such that M M⊤ = X (Cholesky’s decomposition).
3. Generate a random vector g ∼ N(0, In).
4. Set x i = sign〈X i , g〉 for i ∈ [n].

In other words, we generate a random hyperplane whose normal is g. All vectors X i above it
and below define respectively two subsets of the partition.

Finally, the main result says that the SDP relaxation provides a significantly better approxi-
mation than the previous 0.5-approximation.

Theorem 14.1 0.878-approximation algorithm for maximum cut. Let x = (x i) be the result
of a randomized rounding of the solution of the semidefinite program (14.3). Then

E [CUT(G, x)]⩾ 0.878 · SDP(G)⩾ 0.878 ·MAXCUT(G).

The second inequality is obvious.

Lemma 14.2 Grothendieck’s identity. Let g ∼ N(0, In). Then for any fixed u, v, we have

E [sign〈u, g〉 sign〈v, g〉] = 2
π

arcsin〈u, v〉.

Proof. Recall that a Gaussian distribution is invariant under rotation: g and U g have the same
distribution for any orthogonal matrix U . Using this fact, we can reduce the problem to g lying
in the same plane as u and v, with its angle uniformly distributed. This simplifies the problem
to 2D. ■

In the previous lemma, the function arcsin is difficult to work with, so instead we use the
following bound.

Lemma 14.3 For every t ∈ [−1,1] it holds

1− 2
π

arcsin t =
2
π

arccos t ⩾ 0.878(1− t).
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Proof of Theorem 14.1. First, we have

E [CUT(G, x)] =
1
4

n
∑

i, j=1

ai j(1− E
�

x i x j

�

).

By the definition of x i , followed by Lemma 14.2 and 14.3, we have

1− E
�

x i x j

�

= 1− E
�

sign〈X i , g〉 sign〈X j , g〉�= 1− 2
π

arcsin〈X i , X j〉⩾ 0.878 · (1− 〈X i , X j〉).

Hence,

E [CUT(G, x)]⩾ 0.878 · 1
4

n
∑

i, j=1

ai j(1− 〈X i , X j〉) = 0.878 · SDP(G).

■

Comments
This result was proposed by Goemans and Williamson in [1]. I mostly followed the exposition
in [2].

References
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[2] Roman Vershynin. High-dimensional probability: An introduction with applications in data
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Lecture 15: Randomized Power Method

15.1 Power method
Let A be an n× n symmetric positive semidefinite matrix with eigenvalues λ1 ⩾ . . .⩾ λn ⩾ 0.
We would like to estimate λ1. One of the most basic methods for this is the power method:

Algorithm 5 Power Method
Initialization: y0 = w ∈ Rn.
for k = 1,2 . . . , do

yk =
Ayk−1
∥Ayk−1∥ .

ξk = 〈yk, Ayk〉
end for

Clearly, we have that ξk ∈ [0,λ1]. We will need the notion of the relative error

err(ξk) =
λ1 − ξk

λ1
∈ [0,1].

For simplicity, we assume throughout the lecture the following.

Assumptions:
1. A is a diagonal matrix A= diag(λ1, . . . ,λn).
2. λ1 = 1.

The first assumption, while it may seem far-fetched, is achieved without loss of generality by
eigendecomposition A= UΛU⊤, with orthogonal U and diagonal Λ. This means we are merely
changing the basis in which we work. Note that the algorithm won’t have access to this basis;
it is used only to simplify the analysis. The second assumption is easily satisfied by rescaling
the matrix.
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15.1.1 Relative error
Using that λ1 = 1, we have

err(ξk) = 1− 〈yk, Ayk〉= 1− 〈w, A2k+1w〉
〈w, A2kw〉 =

〈w, A2k(I − A)w〉
〈w, A2kw〉

=

∑

i∈[n]w
2
i λ

2k
i (1−λi)

∑

i∈[n]w
2
i λ

2k
i

// A= diag(λ1, . . . ,λn)

=

∑

i>1 w2
i λ

2k
i (1−λi)

w2
1 +

∑

i>1 w2
i λ

2k
i

. (15.1)

15.1.2 Classic analysis

Theorem 15.1 Let A be a symmetric psd matrix with λ1 > λ2 > λ3. Suppose that w ∈ Rn

with w1 ̸= 0. Then the power method satisfies

err(ξk+1)
err(ξk)

→
�

λ2

λ1

�2

, as k→∞.

This is a rather weak result. We have to make many assumptions, and in the end, we don’t
even get an explicit convergence rate, only a limit.

Proof. We use (15.1) twice to get

err(ξk+1)
err(ξk)

=

∑

i>1 w2
i λ

2(k+1)
i (1−λi)

∑

i>1 w2
i λ

2k
i (1−λi)

· w2
1 +

∑

i>1 w2
i λ

2k
i

w2
1 +

∑

i>1 w2
i λ

2(k+1)
i

.

Since 1= λ1 > λ2 > λ3, the limit of the first fraction is λ2
2 and the second is 1. Since λ1 = 1,

the statement follows. Note that if λ1 ̸= 1, we had to divide all terms over λ2k+1
1 and the same

arguments can be applied. ■

15.2 Randomized power method
In general, the power method may not converge to the largest eigenvalue. This happens if
we start from y0 = w that is an eigenvector that corresponds to λi, i > 1. This is why, in
Theorem 15.1 we asked w1 ̸= 0. And this is why in practice we often select the initial point
y0 = w at random.

However, we will show1 that this approach has significant implications, particularly in the
convergence rates of the method.

We refer to Algorithm 5 as the randomized power method if we select y0 = w∼ N(0, In).

15.2.1 RPM with a spectral gap
By a spectral gap we mean that there is a strict inequality λ1 > λ2.

Theorem 15.2 Let A be an n× n symmetric psd matrix with λ1 > λ2. Then the randomized
power method satisfies

E [err(ξk)]⩽

√

√(n− 1)π
2
·
�

λ2

λ1

�k

.

1All the proofs below are not required for the exam.
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By introducing γ= λ1−λ2
λ1

, we can rewrite the above inequality as

E [err(ξk)]⩽

√

√(n− 1)π
2
· (1− γ)k ⩽

√

√(n− 1)π
2
· e−γk.

This means that RPM converges linearly. First we need an auxiliary lemma. Its proof requires
only some basic calculus.

Lemma 15.1 Let g ∼ N(0,1). Then for any c > 0,

E
�

1
g2 + c

�

=
1p
c

ec/2

∫ ∞

p
c

e−t2/2d t ⩽min
§s

π

2c
,
1
c

ª

.

Proof of Theorem 15.2. Since w ∼ N(0, In), each coordinate wi ∼ N(0,1) and by tower rule
and Lemma 15.1,

E [err(ξk)] = E

�

Ew1

�∑

i>1 w2
i λ

2k
i (1−λi)

w2
1 +

∑

i>1 w2
i λ

2k
i

��

⩽
s

π

2
E





∑

i>1 w2
i λ

2k
i (1−λi)

�∑

i>1 w2
i λ

2k
i

�1/2



.

By Cauchy-Schwarz,

∑

i>1

w2
i λ

2k
i (1−λi)⩽

�

∑

i>1

w2
i λ

2k
i (1−λi)

2

�1/2�
∑

i>1

w2
i λ

2k
i

�1/2

.

Hence, we can continue

E [err(ξk)]⩽
s

π

2
E

�

∑

i>1

w2
i λ

2k
i (1−λi)

2

�1/2

⩽
s

π

2

�

∑

i>1

E
�

w2
i

�

λ2k
i (1−λi)

2

�1/2

// E [ f (x)]⩽ f (E x) for a concave f

⩽
s

π

2

�

(n− 1)max
i>1
λ2k

i (1−λi)
2
�1/2

// E
�

w2
i

�

= 1

⩽

√

√(n− 1)π
2

λk
2

=

√

√(n− 1)π
2

�

λ2

λ1

�k

=

√

√(n− 1)π
2

(1− γ)k ,

which concludes the proof. ■

15.2.2 RPM without a spectral gap
Without assuming a spectral gap, the rate obviously becomes worse. But importantly that we
are still able to have it.

Theorem 15.3 Let A be an n× n symmetric psd matrix. Then the randomized power method
satisfies

E [err(ξk)]⩽
1
k

�

1+ log

√

√(n− 1)π
2

+ log k

�

.

The proof is a more refined version of the proof of Theorem 15.2.
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Proof. Let X =
∑

i>1 w2
i λ

2k
i . Then, as before, we have

E [err(ξk)] = E

�

Ew1

�∑

i>1 w2
i λ

2k
i (1−λi)

w2
1 + X

��

.

Using the full version of the bound in Lemma 15.1, we get

E [err(ξk)]⩽ E

�

∑

i>1

w2
i λ

2k
i (1−λi) ·min

§s

π

2X
,

1
X

ª

�

.

The idea is now to estimate terms in the sum differently depending on whether they are larger
than 1− β or not. We choose any β > 0 and will optimize it later. By splitting the sum, we
obtain

∑

i>1

w2
i λ

2k
i (1−λi)⩽

∑

λi⩽1−β
w2

i λ
2k
i + β

∑

λi>1−β
w2

i λ
2k
i ⩽

∑

λi⩽1−β
w2

i λ
2k
i + βX .

Using this bound, we can continue with E [err(ξk)]:

E [err(ξk)]⩽ E





 

∑

λi⩽1−β
w2

i λ
2k
i + βX

!

·min
§s

π

2X
,

1
X

ª





⩽ E





 

∑

λi⩽1−β
w2

i λ
2k
i

!

s

π

2X



+ β

⩽
s

π

2
E





 

∑

λi⩽1−β
w2

i λ
2k
i

!1/2


+ β

⩽
s

π

2

 

∑

λi⩽1−β
λ2k

i

!1/2

+ β // Jensen and E w2
i = 1

⩽

√

√(n− 1)π
2

(1− β)k + β

⩽

√

√(n− 1)π
2

e−βk + β .

Minimizing last expression over β , we obtain the desired inequality. ■

All in all, we obtain an O
�

log k
k

�

convergence rate. It is possible to eliminate the log k
dependency through more advanced analysis.

15.2.3 Discussion
One could notice that the rates we derived are familiar; they are almost the same as those for
gradient descent in the convex and strongly convex cases.

Let B = I − A and consider the following problem:

min
∥x∥2=1

f (x) :=
1
2
〈Bx , x〉.

Clearly, this problem finds the smallest eigenvalue of B, which is equivalent to finding the
largest eigenvalue of A. Matrix B has eigenvalues between [0, 1], so we can apply the projected
gradient method with α= 1 to this problem:

xk+1 = PSn−1(xk −α∇ f (xk)) = PSn−1(xk − Bxk) =
Axk

∥Axk∥
.



15.2 Randomized power method 76

This is exactly the power method we consider! While we used the projection onto the unit
sphere Sn−1 (a nonconvex set!), it is not essential. The power method uses normalization only
for numerical purposes. The question then is how to interpret the results of the randomized
power method through the language of gradient descent. What is the role of a spectral gap
there?

Comments
The analysis of the randomized power method are from [1]. In our exposition, we mostly
followed lecture notes [2].
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